
University of California

Los Angeles

The Voice Source in Speech Production: Data,

Analysis and Models

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Yen-Liang Shue

2010



c© Copyright by

Yen-Liang Shue

2010



The dissertation of Yen-Liang Shue is approved.

Mihaela var der Schaar

Kung Yao

Patricia Keating

Abeer Alwan, Committee Chair

University of California, Los Angeles

2010

ii



To Ma and Ba,

the foundations of my existence.

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview and motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The linear speech production model . . . . . . . . . . . . . . . . . 6

1.2.1 Voice source models . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 The vocal tract . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Estimation of the voice source signal . . . . . . . . . . . . . . . . 13

1.4 Voice quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Measures related to voice quality . . . . . . . . . . . . . . 16

1.4.2 Prosody . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 A New Voice Source Model based on High-Speed Imaging of the

Vocal Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Existing voice source models . . . . . . . . . . . . . . . . . . . . . 23

2.2 High-speed imaging of the vocal folds with synchronous audio

recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Subjects and voice samples . . . . . . . . . . . . . . . . . . 26

2.2.2 Image segmentation . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Glottal area estimation . . . . . . . . . . . . . . . . . . . . 29

2.3 A new voice source model . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Properties of the new source model . . . . . . . . . . . . . 35

iv



2.3.2 Incomplete glottal closures and the DC-offset . . . . . . . 35

2.3.3 Glottal area or glottal flow? . . . . . . . . . . . . . . . . . 36

2.4 Evaluation of the new source model . . . . . . . . . . . . . . . . . 37

2.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . 40

3 A Codebook Search Technique for Estimating the Voice Source 41

3.1 Voice source estimation . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Acoustic Correlates of Voice Quality . . . . . . . . . . . . . . . . 60

4.1 Acoustic measures related to voice quality and to the voice source 60

4.2 VoiceSauce - a program for voice analysis . . . . . . . . . . . . . 63

4.2.1 F0 and formant calculations . . . . . . . . . . . . . . . . . 63

4.2.2 Harmonic magnitudes and spectral amplitude calculations

and corrections . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Energy calculation . . . . . . . . . . . . . . . . . . . . . . 65

4.2.4 CPP and HNR calculation . . . . . . . . . . . . . . . . . . 66

4.3 Application I: Voice quality analysis with respect to acoustic mea-

sures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Application II: Automatic gender classification . . . . . . . . . . . 80

4.4.1 Speech data . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . 84

4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Application III: Prosody analysis . . . . . . . . . . . . . . . . . . 91

4.5.1 Speech corpus . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.2 Voice quality related measures . . . . . . . . . . . . . . . . 94

4.5.3 Contour Fitting and Analysis . . . . . . . . . . . . . . . . 94

4.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . 102

5 Acoustic Correlates of High and Low Nuclear Pitch Accents in

American English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Prosody and pitch accents . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Corpus and analysis methods . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 F0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



5.3.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.3 Duration - effects of pitch accent on phrase final lengthening127

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Overall results . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.2 Individual speaker analyses . . . . . . . . . . . . . . . . . 138

5.4.3 Theories of tonal crowding . . . . . . . . . . . . . . . . . . 143

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.1 Source modeling and estimation . . . . . . . . . . . . . . . 150

6.1.2 Correlates of voice quality . . . . . . . . . . . . . . . . . . 151

6.1.3 Correlates of pitch accents . . . . . . . . . . . . . . . . . . 152

6.2 Unsolved issues and outlook . . . . . . . . . . . . . . . . . . . . . 153

A Averaged Glottal Area Waveforms . . . . . . . . . . . . . . . . . . 155

B Glottal Area Model Fitting Performance of the Proposed New

Source Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C Voice Source Estimation Results for each Subject . . . . . . . . 171

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

vii



List of Figures

1.1 Simplified human speech production consisting of the lungs, voice

source and vocal tract (from [Fla65]). . . . . . . . . . . . . . . . . 2

1.2 The vocal folds in a (a) closed position and (b) open position. . . 4

1.3 The linear source-filter model of speech production [Fan70]. The

top panels show the model in the time domain, and the bottom

panels show the model in the frequency domain. . . . . . . . . . . 6

1.4 The linear source-filter model of speech production with the dif-

ferentiated voice source. . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Example of the Rosenberg model where TP /(TP + TN) = 0.8. . . . 9

1.6 Example of the LF model showing the five main parameters: ta,

tc, te, tp, and Ee. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Examples of formant frequencies for /iy/ (solid line) and /æ/ (dot-

ted line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Part of a spectrum for an /æ/ vowel showing the LP envelope

incorrectly detecting a formant frequency at around 200 Hz. . . . 14

1.9 Magnitude spectrum of the vowel /æ/ showing the measures: pitch

frequency (F0), harmonic amplitudes (H1, H2 and H4), formant

frequencies (F1, F2 and F3), and the spectral magnitudes at the

formant frequencies (A1, A2 and A3). . . . . . . . . . . . . . . . . 17

viii



2.1 The LF model. Top panel illustrates the glottal flow derivative: in-

stant of maximum airflow (tp), instant of maximum airflow deriva-

tive (te), effective duration of return phase (ta), beginning of closed

phase (tc), fundamental period T0, and amplitude of maximum ex-

citation of glottal flow derivative (Ee). Bottom panel illustrates

the glottal flow model. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Glottal area estimation procedure. Images shown are from the low

F0, breathy phonation of subject FM1. . . . . . . . . . . . . . . . 28

2.3 Glottal area waveform averaging and normalization. Waveforms

are from the low F0, breathy phonation of subject FM1. . . . . . . 30

2.4 The averaged glottal waveforms for the nine phonation combina-

tions for subject FM1. F0 (low, normal and high) was varied quasi-

orthogonally with voice quality (pressed, normal and breathy).

Note that the three voice quality types differ little in the open-

ing, with most of the difference seen in the closing and in the

minimum values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Example of the proposed source model with OQ = 0.7, α = 0.6,

Sop = 0.5 and Scp = 0.7. . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Model fitting performance for the phonations from subject FM1

(left panel: low F0, pressed) and subject M2 (right panel: low F0,

normal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Model fitting performance for the low F0, normal phonation from

subject FM3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 A typical inverse-filtering process. The residual signal is then used

to map onto a source model. . . . . . . . . . . . . . . . . . . . . . 43

ix



3.2 The main source estimation procedure. . . . . . . . . . . . . . . . 45

3.3 Block diagram showing the method for generating the codebook.

Any voice source model can be used to generate the codebook. . . 47

3.4 Block diagram showing the two iterations of the source estimation

method; solid and dashed lines represent the first and second iter-

ation, respectively. The codebook sizes are based on the proposed

new source model described in Chapter 2. . . . . . . . . . . . . . 51

3.5 MSEs averaged across all phonations for each gender in terms of

the voice quality (pressed, normal and breathy) and type of for-

mant constraint (Snack, manual and constant). . . . . . . . . . . 55

3.6 MSEs averaged across all phonations for each gender in terms of

the F0 type (low, normal and high) and type of formant constraint

(Snack, manual and constant). . . . . . . . . . . . . . . . . . . . . 55

3.7 Phonation with the lowest source estimation error (MSE = 0.0018).

The measured source waveform was taken from the high F0, pressed

phonation of subject FM1. The estimated source waveform (dashed)

was from the manual-based formant constraints method. . . . . . 56

3.8 Phonation with the highest source estimation error. The measured

source waveform was taken from the high F0, breathy phonation of

subject FM3 with the DC-offset removed. The dashed line shows

the estimated waveform using Snack-based formant constraints

(MSE = 0.2995) and the dotted line shows the estimated wave-

form using constant-based formant constraints (MSE = 0.0116). . 57

4.1 Mean OQ values for each speaker averaged over the pressed, nor-

mal and breathy phonations. . . . . . . . . . . . . . . . . . . . . . 71

x



4.2 Examples of voice source shapes for the mean OQ and α values

listed in Table 4.3; Sop and Scp were both set to a value of 0.5. . . 72

4.3 Examples of voice source shapes for the mean OQ, α and Sop values

listed in Table 4.4; Scp was set to a value of 0.5. . . . . . . . . . . 74

4.4 Gender classification accuracy for each age group using just F0,

just FB, and F0 plus FB (M0). . . . . . . . . . . . . . . . . . . . 85

4.5 Gender classification accuracy for each age group using the mea-

sures sets M1, M2 and M3. M0 represents the baseline performance

results. The corresponding values are listed in Table 4.9. . . . . . 87

4.6 Average stylized F0 contours “Dagada” (males). . . . . . . . . . . 97

4.7 Average stylized F0 contours for “doodads” (females). . . . . . . . 98

4.8 Average stylized H∗
1 − H∗

2 contours for “Dagada” (males). . . . . 99

4.9 Stylized H∗
1 −A∗

3 contours for “Dagada” for a male talker showing

syllable boundaries for an instance of each prosodic case. . . . . . 100

5.1 Example of polynomial fitting for the target word dagada with a

high (H∗) pitch accent. The top panel shows the waveform, the

bottom panel shows the raw and stylized F0 contours. The dotted

vertical lines mark the position of the manual segmentation. . . . 112

5.2 Example of polynomial fitting for the target word dada with a low

(L∗) pitch accent. The top panel shows the waveform, the bottom

panel shows the raw and stylized F0 contours. The dotted vertical

line marks the position of the manual segmentation. . . . . . . . . 113

xi



5.3 Scatter plot for the target word dagada showing relative F0 peaks

for H∗ and their relative positions in the accented target vowel for

a male speaker in three different contexts: 1. no-bnd-early/no-

bnd-early-daily (triangles); 2. bnd (crosses); 3. no-bnd-late-daily

(circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Scatter plot for the target word dada showing relative F0 peaks for

H∗ and their relative positions in the accented target vowel for a

female speaker in the three different contexts. . . . . . . . . . . . 120

5.5 Scatter plot of relative mean vowel energy of the H∗ accented vowel

for the target word dagada for all male speakers in three different

contexts: 1. no-bnd-early/no-bnd-early-daily (triangles); 2. bnd

(crosses); 3. no-bnd-late-daily (circles). . . . . . . . . . . . . . . . 125

5.6 Scatterplot of relative mean vowel energy of the H∗ accented vowel

for the target word dada for all female speakers in three different

contexts: 1. no-bnd-early/no-bnd-early-daily (triangles); 2. bnd

(crosses); 3. no-bnd-late-daily (circles). . . . . . . . . . . . . . . . 126

5.7 Average main-stressed syllable duration with no (Non), L∗, and

H∗ pitch accents for male and female speakers for the target word

dagada in the early, late and boundary positions. . . . . . . . . . 129

5.8 Average final vowel durations and error bars of the unaccented

words dagada and dada for male and female speakers in the late,

early and boundary positions. The increased duration for the

boundary case confirms the effects of phrase final lengthening. . . 130

xii



5.9 Average main-stressed vowel durations and error bars of the un-

accented words dagada and dada for male and female speakers in

the late, early and boundary positions. The increased duration for

the boundary case confirms the unaccented main-stressed syllable

lengthening at the boundary condition. . . . . . . . . . . . . . . . 131

5.10 Average final syllable durations for male speakers for phrase final

target word dagada with no preceding accents, with a preceding

H∗ accent, and with a preceding L∗ accent. . . . . . . . . . . . . . 133

5.11 Average final syllable durations for female speakers for phrase final

target word dada with no preceding accents, with a preceding H∗

accent, and with a preceding L∗ accent. . . . . . . . . . . . . . . . 134

5.12 Scatter plot for the target word dagada showing relative F0 peaks

for H∗ and their relative positions in the accented target vowel

for the male speaker M1 in three different contexts: 1. no-bnd-

early/no-bnd-early-daily (triangles); 2. bnd (crosses); 3. no-bnd-

late-daily (circles). . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.13 Scatter plot showing the times for the raw peak position in mil-

liseconds from the V onset and the normalized peak heights for the

three cases; no-bnd-early(-daily) (triangles), bnd (crosses) and no-

bnd-late-daily (circles). The left panel shows the times and heights

for a typical male speaker for the target word dagada and the right

panel shows the results for a typical female speaker for the target

word dada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xiii



A.1 The averaged glottal waveforms for the nine phonation combina-

tions for subject FM2. F0 (low, normal and high) was varied quasi-

orthogonally with voice quality (pressed, normal and breathy).

Data for the pressed phonation with normal F0 was not available

for this subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 The averaged glottal waveforms for the nine phonation combina-

tions for subject FM3. F0 (low, normal and high) was varied quasi-

orthogonally with voice quality (pressed, normal and breathy). . . 157

A.3 The averaged glottal waveforms for the nine phonation combina-

tions for subject M1. F0 (low, normal and high) was varied quasi-

orthogonally with voice quality (pressed, normal and breathy).

Data for the low F0 phonations was not available for this subject. 158

A.4 The averaged glottal waveforms for the nine phonation combina-

tions for subject M2. F0 (low, normal and high) was varied quasi-

orthogonally with voice quality (pressed, normal and breathy). . . 159

A.5 The averaged glottal waveforms for the nine phonation combina-

tions for subject M3. F0 (low, normal and high) was varied quasi-

orthogonally with voice quality (pressed, normal and breathy). . . 160

B.1 Model fitting performance of the proposed new source model for

subject FM1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.2 Model fitting performance of the proposed new source model for

subject FM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.3 Model fitting performance of the proposed new source model for

subject FM3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xiv



B.4 Model fitting performance of the proposed new source model for

subject M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.5 Model fitting performance of the proposed new source model for

subject M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.6 Model fitting performance of the proposed new source model for

subject M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.1 Plot of the measured (solid line) and estimated glottal area wave-

forms for subject FM1. The estimated waveforms are from the

Snack-based (dotted line) and manual-based (dashed line) formant

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.2 Plot of the measured (solid line) and estimated glottal area wave-

forms for subject FM2. The estimated waveforms are from the

Snack-based (dotted line) and manual-based (dashed line) formant

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.3 Plot of the measured (solid line) and estimated glottal area wave-

forms for subject FM3. The estimated waveforms are from the

Snack-based (dotted line) and manual-based (dashed line) formant

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.4 Plot of the measured (solid line) and estimated glottal area wave-

forms for subject M1. The estimated waveforms are from the

Snack-based (dotted line) and manual-based (dashed line) formant

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xv



C.5 Plot of the measured (solid line) and estimated glottal area wave-

forms for subject M2. The estimated waveforms are from the

Snack-based (dotted line) and manual-based (dashed line) formant

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.6 Plot of the measured (solid line) and estimated glottal area wave-

forms for subject M3. The estimated waveforms are from the

Snack-based (dotted line) and manual-based (dashed line) formant

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xvi



List of Tables

1.1 Some common voice quality related measures. . . . . . . . . . . . 18

2.1 Mean F0 values for the low, normal and high F0 with pressed (p),

normal (n) and breathy (b) voice qualities. ‘–’ denotes data was

not available for a particular phonation. . . . . . . . . . . . . . . 27

2.2 Model fitting results for each phonation from each speaker. Results

are shown for the proposed/LF models. ‘–’ denotes data was not

available for a particular phonation. . . . . . . . . . . . . . . . . . 38

3.1 Optimization constraints for formant frequencies for each subject. 50

3.2 Results for each subject and the formant constraint method (Snack,

manual and constant based). Values are the MSEs, averaged over

all of a subject’s phonations, for the LF/proposed new source models. 53

3.3 Correlation coefficients (r) for the model-fitted source parameters

and the estimated source parameters from the Snack-, manual-,

and constant-based formant frequency constraints. The signifi-

cance levels are in parenthesis, where ‘–’ denotes a particular cor-

relation was not statistically significant. . . . . . . . . . . . . . . . 54

4.1 List of acoustic measures though to be related to the voice source

and/or voice quality . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Occurrences of glottal gaps in terms of speaker, F0 type (low, nor-

mal and high) and voice quality (pressed, normal and breathy).

‘–’ denotes an entry where no speaker produced a glottal gap. . . 68

xvii



4.3 Voice source model parameters and acoustic measures which were

affected by voice quality in a statistically significant way. Values

shown are the F value (ratio of the model mean square to the

error mean square), η2 (measure of the effect size), and the pa-

rameter/measure means and standard deviations (in parentheses)

for the three voice qualities. . . . . . . . . . . . . . . . . . . . . . 70

4.4 Voice source model parameters and acoustic measures which were

statistically significant to the effects of the glottal gap. Values

shown are the F value, η2, and the parameter/measure means

and standard deviations (in parentheses) for the phonations with

glottal gaps and without glottal gaps. . . . . . . . . . . . . . . . . 75

4.5 Correlations between voice source model parameters and acoustic

measures. Values are the correlation coefficients (r); correlations

with r > 0.4 are in bold and were all statistically significant. Mea-

sures H2−H4 and Energy did not show any meaningful correlations

with any voice source parameters. . . . . . . . . . . . . . . . . . . 78

4.6 Distribution of gender and utterances for each age group. . . . . . 83

4.7 Distribution of utterances used in perception experiments. . . . . 84

4.8 Measure sets (M0–M3) used in the gender classification tests. M0,

in bold, is used as the baseline measure set. . . . . . . . . . . . . 86

4.9 Gender classification accuracy for the different measurement sets

(M0-M3) and age groups. MFCC feature classification results are

shown for comparison. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 Gender classification accuracy for age group 12-13, distinguishing

between males and females. . . . . . . . . . . . . . . . . . . . . . 88

xviii



4.11 SVM gender classification accuracy, in percent, using measure set

M2 compared with perception results from this paper (PER1) and

from Perry et al. [POA01](PER2). Dashes indicate unavailable

values. The perception experiments used the target words. . . . . 90

5.1 Position of the F0 peak/trough as a percentage of the speaker’s

vowel duration. The results shown are averaged for the male and

female speakers for the target words dagada and dada; standard

deviation values are shown in parentheses. The statistical signifi-

cance (s.s.) column shows the ANOVA results for no-bnd vs. bnd.

For significant results, the F (ratio of the model mean square to

the error mean square) and η2 (measure of the effect size) values

are given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Height of the F0 excursion as a percentage of the speaker’s mean

F0. Average results are shown for the no-bnd vs. bnd conditions

for the male and female speakers for the target words dagada and

dada; standard deviation values are shown in parentheses. . . . . 117

5.3 Position of the F0 peak/trough as a percentage of the speaker’s

target vowel duration. Results shown are average values for the

male and female speakers for target words dagada and dada in the

no-bnd-early(-daily) vs. bnd condition; standard deviation values

are shown in parentheses. . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Height of the F0 excursion as a percentage of the speaker’s mean

F0. Results shown are for the no-bnd-early(-daily) vs. bnd condi-

tions; standard deviation values are shown in parentheses. . . . . 122

xix



5.5 Relative position of the F0 peak/trough as a percentage of the

speaker’s target vowel duration. Results shown are average vales

for the male and female speakers for target words dagada and dada

in the no-bnd-late-daily vs. bnd condition; standard deviation val-

ues are shown in parentheses. . . . . . . . . . . . . . . . . . . . . 123

5.6 Relative height of the F0 excursion as a percentage of the speaker’s

mean F0. Results shown are for no-bnd-late-daily vs. bnd ; stan-

dard deviation values are shown in parentheses. . . . . . . . . . . 124

5.7 Relative energy mean, standard deviation (std.) in parenthesis, of

stressed syllables for the target word dagada for male and female

speakers. Results are shown for no-bnd vs. bnd. . . . . . . . . . . 127

5.8 Relative energy mean, standard deviation (std.) in parenthesis,

of stressed syllables for the target word dada for male and female

speakers. Results are shown for no-bnd vs. bnd. . . . . . . . . . . 128

5.9 Average duration, standard deviation (in parenthesis) of the final

syllable of dagada/dada with no preceding pitch accent, with a H∗

preceding accent, and with a L∗ preceding accent. All results were

statistically significant. . . . . . . . . . . . . . . . . . . . . . . . . 135

5.10 Comparison of the speakers M1, M2 and F9’s F0 peak position and

relative height consistencies with the general trends for the bnd

case; a ‘Yes’/‘No’ denotes agreement/disagreement while ‘N/A’

means no enough data was available. . . . . . . . . . . . . . . . . 141

B.1 Voice source parameters from the model fit (see Figure B.1) for

subject FM1. “G. gap” denotes the existence/absence of the glot-

tal gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xx



B.2 Voice source parameters from the model fit (see Figure B.2) for

subject FM2. “G. gap” denotes the existence/absence of the glot-

tal gap. Pressed, normal F0 phonations were not available for this

subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.3 Voice source parameters from the model fit (see Figure B.3) for

subject FM3. “G. gap” denotes the existence/absence of the glot-

tal gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.4 Voice source parameters from the model fit (see Figure B.4) for

subject M1. “G. gap” denotes the existence/absence of the glottal

gap. Low F0 phonations were not available for this subject. . . . . 169

B.5 Voice source parameters from the model fit (see Figure B.5) for

subject M2. “G. gap” denotes the existence/absence of the glottal

gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.6 Voice source parameters from the model fit (see Figure B.6) for

subject M3. “G. gap” denotes the existence/absence of the glottal

gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.1 MSE values for source estimation using Snack-based formant con-

straints with the proposed new source model; results listed in terms

of voice quality (pressed, normal and breathy) and F0 type (low,

normal and high). ‘–’ denotes data was not available for a partic-

ular phonation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xxi



C.2 MSE values for source estimation using manual-based formant con-

straints with the proposed new source model; results listed in terms

of voice quality (pressed, normal and breathy) and F0 type (low,

normal and high). ‘–’ denotes data was not available for a partic-

ular phonation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.3 MSE values for source estimation using constant-based formant

constraints with the proposed new source model; results listed in

terms of voice quality (pressed, normal and breathy) and F0 type

(low, normal and high). ‘–’ denotes data was not available for a

particular phonation. . . . . . . . . . . . . . . . . . . . . . . . . . 174

xxii



Acknowledgments

I would like to express my deepest gratitude to my advisor, Professor Abeer Al-

wan for her guidance and support during my time in her lab. Her understanding,

patience and wisdom made it easier for me to navigate past the many research

obstacles I faced. I would also like to thank my committee members, professors

Mihaela van der Schaar, Kung Yao and Patricia Keating for their interest in my

work.

Special thanks must be given to professors Patricia Keating and Jody Kreiman,

who introduced me to linguistics and statistics. Working with them taught me

many things about analysis methods and how to apply them to different data.

Their enthusiasm and accessible nature meant that I always had a place to discuss

matters of voice quality and the intricacies of the vocal folds.

I was incredibly fortunate and privileged to have been able to collaborate with

professors Stefanie Shattuck-Hufnagel, Nanette Veilleux, and Sun-Ah Jun. Their

help with designing and recording the prosodically-balanced corpus allowed me

to concentrate on the analysis, while their vast knowledge and brilliant insights

into the mysteries of prosody often helped me to get unstuck when I was running

low on ideas.

One of the things that I realized during my research, was that without good

data, no analyses can be performed and no hypotheses tested. To this end, I

am greatly indebted to the students from the UCLA Department of Linguistics

and also the students from MIT who volunteered to be our subjects. Much

appreciation also goes to the glottal bureaucrats at the UCLA Bureau of Glottal

Affairs for their invaluable high-speed glottal imaging data.

Finally, I would like to express my gratitude to the two ex-lab members

xxiii



who were instrumental in helping me start and advance my research: Sankaran

“Panchi” Panchapagesan, whose reasoning ability meant that I was never lost in

a train of thought, and Markus Iseli, who introduced me to the voice source and

was my partner in crime during our many paper-writing escapades.

This research was supported in part by the NSF and by NIH grant DC01797.

Parts of this dissertation have appeared in the publications listed under “Publi-

cations and Presentations”.

xxiv



Vita

1980 Born, Taipei, Taiwan.

12/1998–2/1999 Development of an interface to an application-specific inte-

grated circuit.

Texas Instruments, Taipei, Taiwan.

12/2000-2/2001 Recipient of the CSE Computer Systems Research Group Sum-

mer Scholarship.

University of New South Wales, Australia.

2002 B.E. in Computer Engineering.

University of New South Wales, Australia.

2004 M.S. in Electrical Engineering.

University of California, Los Angeles, (UCLA).

2008 Recipient of the Borgstrom Graduate Scholarship for Speech

Research.

University of California, Los Angeles, (UCLA).

6-9/2008 Research and development in the field of speech and audio sub-

systems.

Qualcomm Incorporated, San Diego.

9/2008 Best Student Paper Award at Interspeech 2008.

Brisbane, Australia.

2006–2009 Research/Teaching Assistant

Electrical Engineering Department,

University of California, Los Angeles, (UCLA).

xxv



Publications and Presentations

Y.-L. Shue and A. Alwan, “A new voice source model based on high-speed imag-

ing and its application to voice source estimation,” accepted for IEEE ICASSP,

Dallas, TX, March 2010.

Y.-L. Shue, S. Shattuck-Hufnagel, M. Iseli, S.-A. Jun, N. Veilleux, and A. Alwan,

“On the acoustic correlates of high and low nuclear pitch accents in American

English”, Speech Communications, vol. 52, pp. 106–122, 2010.

Y.-L. Shue, P. Keating, and C. Vicenik, “VoiceSauce: A program for voice anal-

ysis,” The Journal of the Acoustical Society of America, San Antonio, TX, vol.

124, no. 4, p. 2221, October 2009.

P. Keating and Y.-L. Shue, “Voice quality variations with fundamental frequency

in English and Mandarin,” The Journal of the Acoustical Society of America, San

Antonio, TX, vol. 124, no. 4, p. 2221, October 2009

Y.-L. Shue, J. Kreiman, and A. Alwan, “A novel codebook search technique for

estimating the open quotient,” Proceedings of Interspeech, Brighton, UK, pp.

2895–2898, August 2009.

Y.-L. Shue, S. Shattuck-Hufnagel, M. Iseli, S.-A. Jun, N. Veilleux, and A. Al-

wan, “Effects of intonational phrase boundaries on pitch-accented syllables in

xxvi



American English”, Proceedings of Interspeech, Brisbane, Australia, pp. 873–

876, September 2008.

J. Kreiman, B. Gerratt, M. Iseli, J. Neubauer, Y.-L. Shue, and A. Alwan, “The

relationship between open quotient and H1∗−H2∗,” The Journal of the Acoustical

Society of America, Miami, FL, vol. 124, no. 4, p. 2495, October 2008

J. Kreiman, B. Gerratt, M. Iseli, J. Neubauer, Y.-L. Shue, and A. Alwan, “The

relationship between open quotient and H1∗−H2∗,” Proceedings of the 6th Inter-

national Conference on Voice Physiology and Biomechanics, Tampere, Finland,

August 2008.

Y.-L. Shue, M. Iseli, S. Shattuck-Hufnagel, N. Veilleux, S.-A. Jun, and A. Alwan,

“Effects of boundary tones on accent-related F0 peak alignment,” The Journal

of the Acoustical Society of America, Paris, France, vol. 123, no. 5, p. 3460, May

2008.

Y.-L. Shue and M. Iseli, “The role of voice source measures on automatic gender

classification,” Proceedings of IEEE ICASSP, Las Vegas, NV, pp. 4493–4496,

March 2008.

Y.-L. Shue, M. Iseli, N. Veilleux, and A. Alwan, “Pitch accent versus lexical

stress: quantifying acoustic measures related to the voice source,” Proceedings of

Interspeech, Antwerp, Belgium, pp. 2625–2628, August 2007.

M. Iseli, Y.-L. Shue, and A. Alwan, “Age, sex and vowel dependencies of acous-

xxvii



tical measures related to the voice source,” The Journal of the Acoustical Society

of America, vol. 121, no. 4, pp. 2283–2295, 2007.

M. Iseli, Y.-L. Shue, M. Epstein, P. Keating, J. Kreiman, and A. Alwan, “Voice

source correlates of prosodic features in American English: a pilot study,” Pro-

ceedings of Interspeech, Pittsburgh, PA, pp. 2226–2229, September 2006.

M. Iseli, Y.-L. Shue, and A. Alwan, “Age- and gender-dependent analysis of voice

source characteristics,” Proceedings of IEEE ICASSP, Toulouse, France, vol. 1,

pp. 389–392, May 2006.

M. Iseli, Y.-L. Shue, and A. Alwan, “Analysis of vowel and speaker dependen-

cies of source harmonic magnitudes,” The Journal of the Acoustical Society of

America, Vancouver, Canada, vol. 117, no. 4, p. 2619, May 2005.

H. ElGindy and Y.-L. Shue, “On sparse matrix vector multiplication with FPGA-

based systems,” Proceedings of the 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa Valley, CA, pp. 273-274,

September 2002.

xxviii



Abstract of the Dissertation

The Voice Source in Speech Production: Data,
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Analysis of the voice source with respect to voice quality is essential to the un-

derstanding of the human speech production system, which can lead to better

speech modeling for improving a vast range of applications. However, due to the

position of the vocal folds, analyzing the source is often hampered by the lack of

direct observations with which to calibrate algorithms.

In this dissertation, two approaches to voice source and voice quality analy-

sis were pursued. In the first approach, the source waveform was extracted by

analyzing the glottal area waveforms from high-speed imaging of the vocal folds.

These direct observations led to the development of a new source model, which

is more accurate compared to existing models. A codebook search technique was

then proposed to estimate the source signal from the acoustic data. Results were

promising for a number of model parameters such as the open quotient and speed

of opening. However, error analysis showed that the algorithm required reason-

able formant-frequency constraints which may be difficult to obtain automatically

in some cases.

In the second approach, voice source related measures were used in three voice

xxix



quality applications: voice source analysis, automatic gender classification and

prosody analysis. In voice source analysis, acoustic measures were examined in

the context of the voice source model parameters obtained from model-fitting the

glottal area waveforms. Results showed that correlations could be made between

model parameters and the related acoustic measures, such as the asymmetry

coefficient and harmonic-to-noise ratio measures. It was also shown that the

model parameters and related acoustic measures were affected by the type of

voice quality (pressed, normal and breathy). In gender classification, voice source

related measures were found to be more helpful in younger (10–14 year old)

speakers, where traditional pitch and formant frequency features were less useful.

Analysis of prosody showed that, amongst other things, features correlated to

pitch accents were not necessarily centered at the target syllable, and depended

on the position of other prosodic events.
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CHAPTER 1

Introduction

1.1 Overview and motivation

The human speech production mechanism consists of a system of articulators

which, when used harmoniously, allows a speaker to produce a vast range of

sounds. The system is physiologically complex, but as shown in Figure 1.1, it

can be broadly classified into three main components: the lungs, the voice source

and the vocal tract. In simplified terms, the lungs can be thought of as an air

pump providing the necessary airflow to stimulate the voice source and vocal

tract, allowing the former to dictate how something is being said, i.e. the voice

quality, and the latter to control what is being said. The term voice quality (at

least for English) encompasses a wide range of voice characteristics ranging from

whispery to breathy, from lax to tense, from creaky to falsetto, from stressed to

non-stressed, and from low-pitched to high-pitched. In order to understand how

different voice qualities are produced, it is necessary to delve into the properties

of the voice source.

Physiologically, the voice source is created when airflow from the lungs is

pushed through the larynx, which is a structure made of cartilage and muscle.

The larynx is positioned just above the trachea and its main cartilage is commonly

known as the voice box or “Adam’s apple”. Within the larynx are a pair of

muscles which form the vocal folds (also known as the vocal cords). In the speech-
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Vocal tract

Voice source

Lungs

Figure 1.1: Simplified human speech production consisting of the lungs, voice source

and vocal tract (from [Fla65]).
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ready position, the vocal folds are usually closed, as shown in Figure 1.2(a).

To produce unvoiced sounds, the vocal folds are held apart, allowing the air

unobstructed flow. With a sufficiently high rate of airflow, turbulence is created

and a noisy sound is produced. To produce voiced sounds, the muscles which

control the closing of the vocal folds (adductor muscles) are used to provide

resistance to the air pressure coming from the lungs. Once the pressure has forced

the vocal folds to open (Figure 1.2(b)), air rushes through, which decreases the

pressure between the folds (“Bernoulli Effect”), causing them to return to the

closed position. This cycle is repeated many times during one second and the

duration of each cycle is known as the fundamental period (T0). The fundamental

frequency (F0) is defined as F0 = 1/T0 and is commonly referred to as the “pitch

frequency” or simply “pitch”. Phonation or voicing is a sustained oscillation

of the vocal folds, and the rate of this vibration is heard as the pitch of the

voice. The rate can be varied, in which case the pitch varies. An animation of

the vocal fold vibrations can be seen at http://www.humnet.ucla.edu/humnet/

linguistics/faciliti/demos/vocalfolds/vocalfolds.htm.

There are considerable physiological differences between the vocal folds of

adult males and adult females. In general, adult males have longer and thicker

vocal folds which result in a lower F0 value, typically around 100–130 Hz; the

average female F0 value is approximately 200–230 Hz.

The pitch frequency is one of the most important parameters of the voice

source and it is also the easiest to estimate from speech signals. In English,

varying the F0 during speech can be used to signal changes in voice quality; e.g.

raising the F0 towards the end of a sentence can cast that sentence as a question

or as an expression of surprise. In tonal languages, such as Mandarin, changes in

F0 on a word usually result in a totally different meaning.
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(a) (b)

Figure 1.2: The vocal folds in a (a) closed position and (b) open position.

There are inherent difficulties with analyzing an articulator which cannot be

accessed or measured easily. Typically, indirect measurement techniques, such

as inverse-filtering (see Section 1.3), are used to infer an estimate of the voice

source. Often, these techniques require a good model of the voice source to fit

to the inverse-filtered signal, which is somewhat contradictory. Another non-

invasive method of obtaining voice source measurements is through the use of

electroglottography (EGG) which, in theory, measures the changes in contact

between the vocal folds. This is achieved by placing two electrodes on the neck,

positioned either side of the larynx, and passing a small high-frequency current

through them. The measured resistance waveforms during a voiced phonation

reflect the movement of the vocal folds and hence, can be used as a measure of

vocal fold contact. However, EGG signals are, at best, another form of indirect

measurement, and can be influenced by various factors such as the thickness of

the neck and the positioning of the electrodes. In [Rot73], a special mask for

measuring the air flow at the mouth and nose was devised. This device was able

to measure the absolute air flow, including the DC component. However, a later

study [HG92] found that the mask was bandlimited to approximately 1.6 kHz

and performed with less accuracy at lower frequencies. Despite the difficulties,
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all of the existing voice source models and measurements do show convergence

to waveforms which are of a similar shape. However, without empirical data

of the “ground truth”, it is difficult to ascertain the accuracy of a particular

measurement or model.

Instead of directly estimating the voice source to study voice quality, one can

also use measures (see Section 1.4.1) which are correlated with some feature of

the voice source. These measures can be spectral or temporal and some have

been used extensively in studies of voice quality [Fis67, HCE94, Han97, Bla97,

HC99, HdD01, CHC05, Esp06, ISA07]. However, there has been less research

into how these measures can be affected by factors such as gender and certain

prosodic events, such as pitch accents and boundary tones (see Section 1.4.2).

This issue is further confounded by cases where multiple prosodic events happen

within a short duration, as can often occur in English. While voice source related

measures have been widely used, presently, there are very few studies which show

how these measures relate physiologically to the vocal-fold movements.

A better understanding of the voice source would improve our knowledge of

how voice quality is produced, and how it is affected by speaker and various

speech sounds. This knowledge can be applied to many applications such as

speech/speaker recognition, speech synthesis, emotion identification, age identi-

fication, speech coding and various medical applications.

This dissertation has two main goals. The first seeks to expand our knowledge

of the voice source by analyzing direct measurements of the vocal folds. A new

source model and source estimation technique is then proposed based on these

direct measurements. The second goal is to examine the role of voice source

related measures in signaling prosodic events, gender, and the movement of the

vocal folds. In the process, a new software application (VoiceSauce) was created

5



* =Differentiator

Differentiator =×

Voice source Vocal tract Speech
time

frequency

Lip radiation

Figure 1.3: The linear source-filter model of speech production [Fan70]. The top

panels show the model in the time domain, and the bottom panels show the model in

the frequency domain.

to simplify the calculation and analysis of these measures.

1.2 The linear speech production model

Although speech production is generally a non-linear process, for short time

frames, it can be reasonably approximated as a cascade of linear systems in-

volving a source function (voice source), a pole-zero filter (simulates the vocal

tract) and a differentiator (simulates lip radiation). This process, shown in Fig-

ure 1.3, is known as the linear source-filter model of speech production [Fan70]

and is widely used in speech research and applications. Physiologically, non-linear

interactions between the vocal tract and the voice source do occur during speech

production, but these interactions are not represented by this model. Mathemat-

ically, if the speech signal is denoted by s(t), and the source, vocal tract and lip

radiation were u(t), v(t) and r(t) respectively, then s(t) = u(t) ∗ v(t) ∗ r(t) and

in the spectral domain, S(ω) = U(ω) · V (ω) · R(ω).
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Since a differential operator is often used to simulate lip radiation, it is com-

mon practise to move the operator so that it is applied to the source signal, as

shown in Figure 1.4. It is important to note that the differentiator is only a

simplification and, as noted in [Ste00], this simplification can become inaccurate

at very low frequencies.

Differentiated 
voice source Vocal tract Speech

0

Figure 1.4: The linear source-filter model of speech production with the differentiated

voice source.

1.2.1 Voice source models

Voice source models can be broadly categorized into two main types: interactive

models which formally describe interaction between the source and the vocal

tract, and non-interactive models, which assume linear source/tract interactions.

Interactive models are generally more complex and involve calculating the glottal

flow signal in relation to the different coupling effects of the voice production

system. However, since these effects are not well understood, non-interactive

models have provided a popular alternative.

Many non-interactive models with varying complexities have been proposed,

such as the Rosenberg [Ros71], Hedelin [Hed84], Fant [Fan79], Ananthapadman-

abha [Ana84], Liljencrants-Fant (LF) [FLL85], and Fujisaki-Ljungqvist [FL86]
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models. The motivations for such a wide range of models are mainly due to the

different types of data and observations on which the models are built. These ob-

servations have come from air-flow masks, EGG signals, mechanical systems, and

inverse-filtering of speech signals based on the linear speech production model

[Fan70]. The simplest of the aforementioned source models, such as the Rosen-

berg, Hedelin, and Fant models, are based on sinusoidal functions, while the

Ananthapadmanabha, LF, and Fujisaki-Ljungqvist models use more complicated

combinations of sinusoids, exponentials and polynomials. A summary of the dif-

ferences of these models is presented here, but more detailed analyses can be

found in [CC95] and [FL86].

The Rosenberg models are probably the simplest and easiest to generate.

In [Ros71], many source models were synthesized and perceptually tested for

naturalness. It was found that the two models which were judged to be the most

natural, had pulses which were similar to waveforms that had been derived from

the inverse-filtering of speech signals. The two models were similar in shape,

but one was generated from polynomials while the other was generated using

trigonometric functions. The Rosenberg trigonometric source model is a glottal

flow model with three parameters and, is defined as:

ug(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α
2

(
1 − cos

(
πt
TP

))
, 0 ≤ t ≤ TP

α cos
(

π(t−TP )
2TN

)
, TP < t ≤ TP + TN

0, during glottal closure

(1.1)

where α is the maximum amplitude of the glottal pulse, TP is the time from

the glottal pulse onset to the maximum amplitude and TN is the time from the

maximum amplitude to the glottal pulse offset. This model, an example of which

is shown in Figure 1.5, has two separate functions for the opening and closing

phases. The Hedelin model was developed based on the Rosenberg trigonometric
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Figure 1.5: Example of the Rosenberg model where TP /(TP + TN ) = 0.8.

model and was used primarily for analysis and synthesis in a LPC-based vocoder.

The main difference was the addition of a low frequency drift component which,

unlike the Rosenberg model, produced non-zero values during the glottal closure.

The Fant model proposed using functions, similar to the Rosenberg trigonomet-

ric model, but with the ability of controlling the flow derivative discontinuity.

The Ananthapadmanabha model further refined the Fant model using data de-

rived from inverse-filtering. Unlike the previous models, the Ananthapadman-

abha model was specified as a derivative flow waveform, which incorporated the

lip radiation effects into the source model. Similarly, the LF (shown in Fig-

ure 1.6) and Fujisaki-Ljungqvist models were also specified as derivative flow

models. With its six parameters, the Fujisaki-Ljungqvist model provided greater

depth in its modeling ability. The use of polynomials instead of trigonometric

functions further allowed the number of parameters to be varied according to the

required level of detail. However, the large number of parameters also made it

difficult to use in analysis and synthesis, in that not all parameter combinations

are able to generate a valid source waveform.
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return
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Figure 1.6: Example of the LF model showing the five main parameters: ta, tc, te,

tp, and Ee.

Although there are many different voice source models, their basic shapes are

similar and appear approximately like what is shown in Figure 1.5. The major

differences are in the handling of the pulse onset, offset and in the tilt of the

pulse.

1.2.2 The vocal tract

The vocal tract functions like an adjustable tube, consisting of many articulators

such as the tongue, palate, nasal cavities, teeth, and lips. Different sounds are

produced when the shape of this tube is altered by the movement of these ar-

ticulators. For example, the vowel /iy/ as in “bead” has a much smaller mouth

opening than the vowel /æ/ as in “bat”. The vocal tract can also be used to

produce turbulent noise for unvoiced sounds by forcing the air to flow through

a narrow channel. The fricative /s/ as in “set” is one such example where the

mouth opening is almost closed, with the tongue positioned close to the palate.

In the frequency domain, the vocal tract has the effect of shaping the source

spectrum. For voiced speech, this shape consists of resonances (formants) and
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anti-resonances. The formants dictate how much energy from the voice source is

transferred to the lips and each formant is described by its formant frequency,

that is, the frequency of resonance and its formant bandwidth, the resonance

bandwidth. Anti-resonances represent energy loss and are typically produced

mainly during the production of consonants. Different sounds have different

formant frequencies. For example, in [PB52] it was found that the average values

of the first three formant frequencies for adult male talkers for the vowel /iy/ were

at 270 Hz, 2290 Hz, and 3010 Hz, whereas the average formant frequencies for

the vowel /æ/ were at 660 Hz, 1720 Hz and 2410 Hz. This is shown in Figure 1.7

using ideal vocal tract shapes; F1, F2 and F3 denote the first, second and third

formant frequencies, respectively.

The vocal tract is usually modeled as a passive acoustic filter containing poles

and zeros. This can be expressed as:

V (z) = G
B(z)

A(z)

where G is the gain factor, A(z), the poles of V (z), represent the formants,

and B(z), the zeros of V (z) represent the anti-resonances of the vocal tract. For

vowels, which carry most of the energy in speech signals, the filter mainly consists

of poles, where each complex-conjugate pole-pair represents a formant frequency

and its corresponding bandwidth. Mathematically, the transfer function of an

all-pole filter can be expressed in the Z-domain as:

V (z) =
G

1 −∑p
k=1 akz−k

(1.2)

where p is the order of poles and ak’s are the coefficients. A set of linear equations

are solved by using linear prediction (LP) techniques [Mak75a] to obtain the ak

values.
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1.3 Estimation of the voice source signal

From the linear speech production model, speech, s(t) is the result of an in-

teraction between between the vocal tract, v(t), and the (differentiated) voice

source, u(t): s(t) = v(t) ∗ u(t). Hence, in the Z-domain, the voice source could

theoretically be estimated if the vocal tract parameters from Eq. 1.2 were known:

U(z) =
S(z)

V (z)
(1.3)

In practice, voice source estimation is significantly more complex due to the

interactions between the vocal tract and the source.

Eq. 1.3 forms the basis for inverse-filtering, where the inverse of the vocal tract

transfer function (VTTF) is used to filter the speech signal in order to obtain an

estimate of the voice source. This requires a good estimate of the VTTF which

is itself a non-trivial task. Typical LP-based methods can introduce inaccuracies

for high-pitched voices. As shown in [Mak75b], these inaccuracies are mainly due

to the error function used to perform the LP:

ELP =
1

N

N∑
n=1

P (ωn)

P̂ (ωn)
(1.4)

where N is the number of frequency bins, P (ω) is the power spectrum of the

actual signal at frequency ωn and P̂ (ωn) is the estimated power spectrum at ωn.

This error criterion is not unbiased, and favors P̂ (ωn) values which are greater

than P (ωn); in terms of speech spectrum matching, this means the valleys in the

actual spectrum will tend to be overestimated while the poles in the estimated

spectrum will be centered around the peaks of the original speech spectrum. In

[EM91], a new error criterion was used based on the Itakura-Saito distortion

measure [IS68]. While it was shown in that study that the new error criterion

produced more accurate results than the standard LP criterion (Eq. 1.4), there
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Figure 1.8: Part of a spectrum for an /æ/ vowel showing the LP envelope incorrectly

detecting a formant frequency at around 200 Hz.

remains a fundamental flaw with estimating the VTTF before estimating the

voice source. Figure 1.8 shows the spectrum for a synthesized /æ/ vowel with

the LP spectrum envelope and the original VTTF envelope. Because the position

of the first formant is so high, at around 850 Hz, the voice source spectrum is

able to dominate the lower frequencies, resulting in a “false” peak at around

200 Hz. Currently, there are two main methods of addressing this issue: (1)

VTTF estimation can be performed when the interactions between the voice

source and the vocal tract are at a minimum, or (2) by using joint source-tract

estimation.

In normal phonation, the voice source is usually off during a certain propor-

tion of time, commonly referred to as the glottal closure regions. During these

regions, little interaction between the voice source and the VTTF occurs and, in
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theory, a better estimate of the VTTF can be obtained. Naturally, this method

requires first determining the position of the glottal closure regions, which is not

an entirely solved problem. In [IC04], sliding windows with variable lengths were

used to estimate the VTTF by successively narrowing down the glottal closure

regions. Inverse-filtered speech signals were compared with EGG signals from 2

male and 2 female subjects, and the results were quite agreeable. However, in

high-pitched voices and certain types of phonations, such as breathy voices, there

may be little or no glottal closure, which would affect the accuracy of this method

to estimate the voice source.

Joint source-tract estimation methods focus on estimating the VTTF and

voice source together. In [FMS01], the LF source model parameters were es-

timated iteratively using multi-dimensional optimization techniques that were

initialized based on the results of an exhaustive parameter search. During the ex-

haustive search, a source parameter set was tested by removing its spectrum from

the speech spectrum, estimating the VTTF and comparing the output of inverse-

filtering with the source spectrum from the parameter set. Multi-dimension op-

timizers were then employed to further refine the parameters. In [PY08], [JI05]

and [PB09], a global optimization scheme was used to estimate the parameters of

the source and VTTF simultaneously. In these studies, the results of the source

estimation were compared with EGG signals and found to be in reasonable agree-

ment.

1.4 Voice quality

Voice quality refers to the component of speech which characterizes, either tem-

porarily or permanently, a speaker’s voice or speaking style. Many of these

characteristics come from the movement patterns of the vocal folds and have

15



traditionally (e.g. [CG97]) been described as having three main linguistic modes:

modal, breathy and pressed. Modal voices are the most common and occur when

the vibrations of the vocal folds are periodic with full closing of the glottis. In

this mode, very little friction noise is produced when air flows through the glottis

and the resulting spectrum has little high frequency components. Breathy voices

are produced when a large volume of air is expended during phonation. An effect

of this is that sometimes the glottis may not be fully closed during the vocal fold

vibrations. Pressed phonations are usually characterized by tense vocal folds and

smaller glottal openings. Other modes are possible such as tense, lax, slack, stiff,

and creaky.

1.4.1 Measures related to voice quality

Instead of directly estimating the voice source signal to study voice quality, one

can also look at measures which are related to the voice source or voice quality.

These measures are usually taken from the speech spectrum, an example of which

is shown in Figure 1.9 for the vowel /æ/ labeled with some of the commonly used

measures: the pitch frequency (F0), the amplitudes of the harmonics (H1, H2 and

H4), and the spectral amplitudes at the formant frequencies (A1, A2 and A3).

Combinations of these measures, such as H1 −H2, are usually used to normalize

the effects of the signal power. Corrections to remove the influences of the VTTF

can also be employed so that the measures are more related to the voice source

signal; corrected measures are usually denoted by an asterisk (‘∗’) as in H∗
1 −H∗

2 .

Table 1.1 lists some of the commonly used voice source related measures.

F0 is the most widely used parameter in the study of voice quality. By defini-

tion, pitch accents are rapid excursions of the voice pitch from the “normal” F0

range of a speaker. These excursions can be of a high (above normal) or low (be-
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Table 1.1: Some common voice quality related measures.

Measure (Hypothesized) relation to the voice source or voice quality

F0 Correlated with pitch accents, boundaries, lexical tones and stress.

H∗
1 − H∗

2 Thought to be correlated with breathiness, and with open quotient

(OQ, the proportion of time the vocal folds are open during phona-

tion).

H∗
1 − A∗

3 Thought to be correlated with spectral tilt and hence, the rate of

closure of the vocal folds.

Energy Related to loudness and voice intensity.

CPP Cepstral peak prominence: thought to be correlated with modality

and breathiness.

Noise Noise in the spectrum can be associated with aspiration noise, which

is usually associated with breathiness.

low normal) nature and are sometimes used by English speakers to signal stress

or emphasis. In English, pitch is also used to denote boundaries; for example, a

lowering of the pitch towards the end of a sentence is usually used to denote a

statement, while a rising of the pitch can be used to denote a question.

H∗
1 −H∗

2 , the difference between the first two harmonic magnitudes corrected

for the effects of the VTTF, has often been taken as a correlate of the open quo-

tient (OQ), which is broadly defined as the proportion of time the vocal folds are

open during a phonation cycle. This relationship can be shown theoretically using

a simple sinusoid, but the relationship is more complex for speech sounds. As-

suming all other influences are constant, a longer opening of the vocal folds means

that the open-phase becomes more closely matched with the pitch period, leading

to a stronger fundamental component (H∗
1 ) in the signal spectrum. In [HHP95],
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OQ estimates from airflow and EGG recordings from 15 female subjects were

used to show that the correlation between H1 −H2 (uncorrected for VTTF) and

OQ was moderate, with r2 = 0.48 and r2 = 0.21 respectively. Since OQ is often

thought to be correlated with breathiness ([Huf87, Fis67, SL90]), by association,

H∗
1 − H∗

2 has also been used as a measure of breathiness. In perceptual studies,

[HCE94] and [KK90] found H1 − H2 to be moderately correlated with perceived

breathiness. Other studies involving phonation type languages such as Maza-

tec ([Bla97]), Zapotec ([Ave04]), Khmer ([WJ03]), Gujarati ([Kha09, Esp06])

and Hmong ([EPY09]) have also found that H1 − H2 can be used to distinguish

breathy phonations from non-breathy phonations. More recent studies ([HdD01])

have showed that the relationship between H∗
1 − H∗

2 and OQ is not as strong as

previously thought and depends on other voice source parameters such as the

asymmetry coefficient (proportion of opening phase duration to closing phase

duration).

H∗
1−A∗

3, the difference between the VTTF-corrected first harmonic magnitude

and the corrected spectrum level at the frequency of the third formant, was shown

in [Han97] to be related with the source spectral tilt. Source spectral tilt or

spectral balance typically measures the amount of high frequency components

relative to low frequencies. They have been used in many voice quality studies

([SV96b, SV96a, CHC05, ISE06]) as a correlate of stress and intonation. It

is generally hypothesized that words with more stress or emphasis will lead to

tenser vocal folds which contain more high spectral frequency components during

phonation.

Energy, unlike other voice source related measures, is known to be correlated

with loudness and voice intensity. However, there have been many measures used

to represent energy such as the amplitude ([CHC05]), the Ee parameter of the LF
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model ([ISE06, Eps02]), and the energy content from specific frequency sub-bands

([RH06]). In terms of voice quality, energy has been shown to be a good correlate

of pitch accents ([CHC05, RH06]) and intonational boundaries ([CHC05, Sli07]),

although it was found in [ISE06] that it was important to differentiate between

the high and low tones in pitch accents due to the relationship between F0 and

energy.

CPP, the cepstral peak prominence, is defined in [HCE94] as “a measure

of cepstral peak amplitude normalized for overall amplitude”. In theory, the

peaks in the cepstral domain (conventionally known as “rahmonics”) reflect the

properties of the source, and a well defined periodic source should have larger

peaks than a less periodic one. Hence, the CPP value should be larger for modal

phonations and smaller for breathy phonations which have more noise in the

cepstral domain; it can also be smaller for creaky voices if the phonation is

aperiodic.

Noise in the speech spectrum is usually thought to be correlated with breath-

iness. In [KK90], perceptual experiments were used to show that when random

noise was added to a synthesized source signal with a large H1 −H2, English lis-

teners were more likely to rate the signal as being breathy than if only H1−H2 was

used by itself. However, other studies ([Fis67, Bic82]) have shown inconsistent

results regarding the importance of noise for perceiving breathiness.

Other measures have also been used such as H∗
1 −A∗

1, H∗
1 −A∗

2 and H∗
2 −H∗

4 .

However, as with the measures in Table 1.1, the relationship between these param-

eters and perceived voice quality have not been extensively studied. In [KGB07],

78 voice source related measures were calculated for the vowel /a/, and analyzed

together with synthesized voice source pulses to determine which measures cap-

tured the majority of the information in a given pulse. The results showed that
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there were many overlaps in what each measure captured and there were also

difficulties with modeling the higher frequency parts of the source spectrum. The

inconsistencies between the various studies that use voice source related measures

can be attributed largely to the lack of empirical evidence relating these measures

with the actual voice source, i.e. the movements of the vocal folds.

1.4.2 Prosody

Prosody, of which voice quality is a part, is a term which is used broadly to refer

to the intonation, rhythm, timing, phrasing and stress in speech. In connected

speech, prosody serves both as a grouping function and a prominence-marking

function. The groups can be phrases or sentences and are indicated by prosodic

boundaries, e.g. the delay or break between the phrases or sentences. In English,

the prominence of a word within a phrase is marked by particular F0 patterns,

called pitch accents ; e.g. a pitch accent can signal a focal accent, for contrastive

stress on a word.

Perceptually, prosodic events can help speakers emphasize particularly im-

portant parts of speech, distinguish between word meanings and signify the con-

clusion of sentences or questions. Likewise, for listeners, the prosodic features of

speech can also help to signal the timing of turn-taking in conversational speech.

Previous studies of prosody have mainly focused on F0, duration and intensity

as acoustic correlates. Because voice quality information is mainly carried in the

voice source, it can be expected that voice source related measures would help

in the study of prosody. In [CHC05], the harmonic structure and spectral tilt

were used with pitch, duration and amplitude information to perform automatic

accent and boundary detection experiments on a large prosodically-labeled cor-

pus. Detection rates of approximately 70% were obtained for both accent and
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boundary detection. However, in that study, the different types of accents (high

vs. low) and boundaries (high vs. low) were not differentiated. In [ISE06] and

[Ise07], it was found that low and high types of pitch accents and boundaries

were correlated differently to the voice source related measures. In this research,

the effects of multiple prosodic events on the measures are studied.

1.5 Dissertation outline

This dissertation is organized as follows.

Chapter 1 presented a brief summary of the human speech production process,

including the voice source, vocal tract and the voice quality aspects.

Chapter 2 proposes a new model of the voice source based on the glottal area

waveforms obtained from the high-speed imaging of the vocal folds.

Chapter 3 introduces a codebook search technique for estimating the voice

source.

A new software package is presented in Chapter 4 which simplifies the cal-

culation of voice source related measures. The software is then used in three

applications: voice source analysis, gender detection and prosody analysis.

Chapter 5 looks deeper into the effects of multiple prosodic targets on the

voice source related measures: F0, energy and duration.

Finally, Chapter 6 summarizes this dissertation and discusses future research

directions.
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CHAPTER 2

A New Voice Source Model based on

High-Speed Imaging of the Vocal Folds

Voice source models have been in existence for many decades. A model allows

a variety of source configurations to be compactly represented by a few param-

eters. A good source model can improve the naturalness of synthesized speech.

In speech analysis, a detailed source model can help to capture the important

properties of a particular speaker. Existing source models have typically been

based on data coming from indirect source observations. In this chapter, high-

speed video recordings of vibrating vocal folds were processed to produce glottal

area waveforms. From these waveforms, a new source model is proposed and

evaluated.

2.1 Existing voice source models

Existing voice source models were reviewed in Section 1.2.1. Most of these sources

such as the Fant, Ananthapadmanabha and LF models, were based on indi-

rect voice source measurements such as the inverse-filtering of speech signals or

inverse-filtered airflow measurements. The Rosenberg models (polynomial and

trigonometric) were obtained by analysis-by-synthesis experiments.

In this chapter, the LF model ([FLL85]) is used as a basis for the derivation of
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a new source model. Since its inception in 1985, the LF model has been the most

widely-used model for voice analysis due to its flexibility. It is also currently the

most commonly-used source model in speech synthesizers. Figure 2.1 shows the

parameters of the LF model, and the equation defining this model is Eq. 2.1. In

this equation, the parameters E0, α and ε denote the amplitude scaling factor,

growth factor and the exponential time constant of the return phase, respectively.

Like the Ananthapadmanabha and Fujisaki-Ljungqvist models, the LF model

specifies the derivative flow and not the actual flow. In [FLL85], the LF model

was shown to provide a better fit than the Ananthapadmanabha model to inverse-

filtering data obtained from one adult male speaker of Swedish. The authors of

that study also suggested that the LF model could also be used to describe glottal

area waveforms, although this claim has not been verified.

u(t) =

⎧⎪⎨
⎪⎩

Eoe
αt sin(ωgt), 0 ≤ t ≤ te(

−Ee

εTa

) [
e−ε(t−te) − e−ε(tc−te)

]
, te < t ≤ tc

(2.1)

Although existing source models have been used with varying degrees of suc-

cess in voice synthesis applications, the limitations of these models become ap-

parent when used for voice analysis. Utilizing inverse-filtering of singing and

speech signals, [HdD01] showed that many source spectra were beyond the scope

of what could be generated with existing source models. In that study, it was

concluded that this could be due to either the deficiencies of current models or

the inaccuracy of inverse-filtering because of source/tract interactions.

Current source models have mainly been derived from some form of empirical

data, typically from indirect sources such as inverse-filtered flow measurements or

EGG observations. However, without direct observations of the physical source,

it is difficult to quantify the accuracy of a particular model.
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Figure 2.1: The LF model. Top panel illustrates the glottal flow derivative: instant of

maximum airflow (tp), instant of maximum airflow derivative (te), effective duration of

return phase (ta), beginning of closed phase (tc), fundamental period T0, and amplitude

of maximum excitation of glottal flow derivative (Ee). Bottom panel illustrates the

glottal flow model.
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2.2 High-speed imaging of the vocal folds with synchronous

audio recordings

Synchronous audio and high-speed video recordings were performed on six sub-

jects, three females (denoted by FM1–3) and three males (denoted by M1–3), all

with perceptually normal voices. These recordings were performed at the Head

and Neck Surgery Division of the UCLA Medical School under the supervision

of Professor Jody Kreiman. The high-speed imaging was performed on the vo-

cal folds at 3000 frames/second at a resolution of 512 × 512 pixels using a 70 ◦

rigid laryngoscope with a 300 watt Xenon light source (Kay Elemetrics) and a

FASTCAM-ultima APX camera (Photron Ltd., San Diego). Audio recordings

were synchronously transduced with a Brüel & Kjær microphone (1.27 cm di-

ameter; type 4193-L-004) and directly digitized at a sampling rate of 60 kHz

(conditioning amplifier: NEXUS 2690, Brüel & Kjær, Denmark; bandpass filter-

ing of microphone signal between 20 Hz and 22.4 kHz; AD converter: voltage

resolution 16 bits, input range ± 5 volts). The audio recordings were further

downsampled to 16 kHz for analysis.

2.2.1 Subjects and voice samples

The six subjects were asked to sustain the vowel /i/ for approximately 10 seconds

while holding voice quality, F0, and loudness as steady as possible. The use of

the vowel /i/ results in an anterior retraction of the epiglottis, thereby providing

the most complete visualization of the vocal folds during phonation [DBP07].

Although the subjects were asked to pronounce the vowel /i/, the vowel quality

ranged from /I/ to approximately /æ/ due to the positioning of the laryngoscope

over the tongue. During the recordings, subjects were also directed to vary F0
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(low, normal and high) and voice qualities (pressed, normal and breathy) quasi-

orthogonally, resulting in a minimum of nine recordings from each speaker. One

second samples of the phonations were extracted from the most stable and repre-

sentative portions of each recording for subsequent analysis. The mean F0 values

for the six speakers are shown in Table 2.1. For F0 values in the 100–400 Hz

range, and images recorded at 3000 fps, there were approximately 7–30 frames

per cycle of phonation. Although the six subjects were directed to produce a

total of nine different phonations, one female, FM2, was not able to produce a

pressed phonation with normal F0, and one male, M1, was unable to produce a

low F0 for the three voice qualities.

Table 2.1: Mean F0 values for the low, normal and high F0 with pressed (p), normal

(n) and breathy (b) voice qualities. ‘–’ denotes data was not available for a particular

phonation.

mean F0 values (Hz) for the different phonations

Subject low F0 (p/n/b) normal F0 (p/n/b) high F0 (p/n/b)

FM1 177/152/145 237/210/198 374/336/301

FM2 218/168/163 –/211/214 288/341/242

FM3 157/196/188 248/219/244 366/426/307

M1 –/–/– 147/137/135 259/230/171

M2 125/103/99 196/129/173 289/204/213

M3 93/91/98 140/135/132 223/201/202

2.2.2 Image segmentation

The glottal area estimation method is shown in Figure 2.2. At the start of

each new phonation, an area of interest is manually selected from the 512 ×
512 image. This area, shown by the bounding box in the figure, is different for
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Figure 2.2: Glottal area estimation procedure. Images shown are from the low F0,

breathy phonation of subject FM1.

each phonation and depends on the distance of the camera from the vocal folds.

An edge-detection algorithm with adjustable threshold is then applied to the

selected area to produce a segmented image. This threshold can be manually

adjusted, if required, after visual inspections of the results. From this segmented

image, a starting point for the region-growing algorithm is found automatically

by seeking out the darkest pixel within the segmented image. This starting point

can be manually overridden if (1) there is much noise in the image, or (2) the

vocal fold openings contain more than one glottal gap. Region-growing on the

starting point(s) is then performed horizontally on each row of the image, using

boundaries from the segmented image to ensure that no pixels outside of the

vocal fold opening are selected. The number of pixels selected for each row is

constrained to be no greater than a certain threshold from the previous row’s

selected pixels. This ensures that gaps in the edge-detection do not lead to

erroneous pixels being counted. The glottal area is then calculated by adding the

number of pixels selected in total.
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2.2.3 Glottal area estimation

The glottal area estimation process was performed using custom-written software.

For images with good contrast levels, as was the case with a few phonations, it

was possible to run the entire procedure automatically. However, due to various

factors such as random noises, over-exposures, image contrast levels, and multiple

glottal gaps, manual adjustments were required for most images.

To reduce processing time, only the first 150 frames (equal to 50 ms) of

each utterance were segmented to extract the glottal areas, resulting in 3 to 15

glottal cycles depending on the F0 used in a particular phonation. Each cycle

of glottal vibration was then marked by recording, where it existed, the first

instances of glottal opening. In samples where there were no complete glottal

closures, the least glottal opening instances were recorded. These points allowed

for the measurements of the glottal area waveforms to be averaged across glottal

cycles to produce a waveform which is representative of the 150 analyzed frames

for a particular phonation. The averaging procedure also helped smooth out

noise from the segmentation process. For comparison, the averaged glottal area

waveforms were then time and amplitude normalized to a length of 100 samples

and a maximum height of 1. Time normalization was done using resampling and,

where they existed, the extra ripples from the resampling process were removed

by zeroing out the values past the main glottal pulse. An example of the averaging

and normalization process is shown in Figure 2.3.

The nine averaged glottal area waveforms for subject FM1 are shown in Fig-

ure 2.4. The waveforms for the other subjects can be seen in Appendix A. From

these waveforms, a few interesting properties can be observed. First, it was no-

ticed that in many cases the opening phase duration was shorter than the closing

phase duration. This is not accounted for in the LF model. Second, in some
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the low F0, breathy phonation of subject FM1.
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cases, mostly involving pressed phonations, both the opening and closing phases

can occur very quickly, much quicker than what can be specified by the LF model.

Finally, the waveforms showed that there should be more flexibility with the func-

tions describing the opening and closing phases. Since the LF model specifies the

flow derivative, its functions do not specify the opening and closing phases, but

the open and return phases.

2.3 A new voice source model

Using the new glottal area data, a new source was proposed to account for prop-

erties described in the previous section. In the LF model (Eq. 2.1), a combination

of exponential functions are used for the return phase. This is problematic be-

cause the decaying property of the exponential does not allow for a quick return

to zero. A combination of an exponential function with a sine function, similar

to the first equation of the LF model, was determined to be a better fit. Other

functions were also tested, but they were either too complex or did not have the

required properties to match the glottal area waveforms.

The proposed model builds upon the first equation of the LF model; since

the LF model specifies the derivative functions, the integrated version of the

first equation is needed to describe the area waveforms. Using the notation from

Eq. 2.1, this can be derived (using integration-by-parts or standard integration

tables) as:

U(t) =

∫ t

0

Eoe
ατ sin(ωgτ)dτ

=
Eoe

αt

α2 + ω2
g

[α sin(ωgt) − ωg cos(ωgt) + C] (2.2)

where C is some arbitrary constant of integration. With the initial condition
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Figure 2.4: The averaged glottal waveforms for the nine phonation combinations for

subject FM1. F0 (low, normal and high) was varied quasi-orthogonally with voice

quality (pressed, normal and breathy). Note that the three voice quality types differ

little in the opening, with most of the difference seen in the closing and in the minimum

values.
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U(t = 0) = 0, C can be shown to equal ωg. Hence, Eq. 2.2 can be written as:

U(t) =
Eoe

αt

α2 + ω2
g

[α sin(ωgt) − ωg cos(ωgt) + ωg] (2.3)

This equation forms the basis of the proposed model and is used for both the

opening and closing phases.

The proposed model is a time-domain glottal area waveform and consists of

4 parameters: open quotient (OQ), asymmetry coefficient (α), speed of opening

phase (Sop), and speed of closing phase (Scp). An example of a model waveform

is show in Figure 2.5, where T0 denotes the pitch period. Using the notation from

this figure, OQ = to+tc
T0

, α = to
to+tc

, Sop = toh

to
and Scp = 1 − tch

tc
where tch and

toh are at 50% of the maximum amplitude. OQ specifies the proportion of time

the vocal folds are open, α controls the proportion of OQ which is used for the

opening phase, and Sop and Scp specifies the proportion of time required to reach

50% of the maximum amplitude for the opening and closing phases. The four

other parameters all range from 0 to 1. By modifying Eq. 2.3 as:

f(x, λ∗) = A(λ∗)
[
eλ∗x(λ∗ sin(πx) − π cos(πx)) + π

]
(2.4)

where A(λ∗) = 1
π(eλ∗

+1)
and

λ∗ = arg min
λ

∣∣∣∣eλs(λ sin(πs) − π cos(πs))

π(eλ + 1)
+

1

eλ + 1
− 1

2

∣∣∣∣ (2.5)

with s = Sop or Scp, the proposed model can be defined as:

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f(βot, λSop), 0 ≤ t ≤ to

f(βc(to + tc − t), λScp), to < t ≤ to + tc

0, to + tc < t ≤ T0

(2.6)

where βo = 1
to

, βc = 1
tc

, and λSop and λScp are the λ∗ values when s = Sop and Scp

in Eq. 2.5, respectively. A(λ∗) is a normalizing term so that max f(x, λ∗) = 1.
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Figure 2.5: Example of the proposed source model with OQ = 0.7, α = 0.6, Sop = 0.5

and Scp = 0.7.
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The slope of f(x, λ∗) is determined by λ∗, which can be calculated by simple

optimization techniques, such as the gradient descent algorithm. A somewhat

non-trivial closed-form solution for λ∗ also exists for some s values involving the

Lambert W -function.

2.3.1 Properties of the new source model

The proposed source model utilizes the integrated version of the first equation

of the LF model to form both the opening and closing phases. This equation

allows for quicker transitions between the pulse onset to the pulse peak and also

between the pulse peak and the pulse offset. Having equations which specify

these two phases separately, like in the Rosenberg model, is important in regards

to the new high-speed imaging data because, as shown by the averaged glottal

area waveforms, the opening phase can be very different compared to the closing

phase.

Unlike the LF and Fujisaki-Ljungqvist models, almost all combinations of pa-

rameters of the proposed source model result in a continuous waveform, although

some degenerate cases exist. For analysis applications, such as model fitting, this

property allows for the parameters to be found quickly.

2.3.2 Incomplete glottal closures and the DC-offset

From the waveforms in Figure 2.4 and Appendix A, it can be seen that in some

phonations, especially the breathy ones, the glottal folds do not close completely

during the closing phase. This leads to a vertical shift in the position of the glottal

area waveforms. While this could be modeled by adding a “DC-offset” parameter,

it was not done here for two main reasons. First, in the linear speech production

model ([Fan70]), lip radiation is often modeled by applying a derivative operation
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to the glottal flow signal (see Section 1.2) which would remove the effects of any

DC-offset parameter. Secondly, it is not well understood how glottal gaps affect

perceived voice quality. Early studies ([Fis67], [KK90] and [SL90]) suggested that

glottal gaps are typically perceived as turbulent noise which is usually manifested

in the frequency domain as a rise in the noise floor of the speech spectrum.

However, empirical evidence to support this hypothesis is difficult to obtain due

to the invasive nature of direct observations of the vocal folds. In [Han97], it was

hypothesized that large posterior glottal openings may result in larger spectral

tilt measures (H∗
1 −A1 and H∗

1 −A∗
3). Her preliminary fiberscopy experiments on

four of those speakers showed that the two speakers with large posterior openings

did indeed have larger spectral tilt measures than those with minor openings.

However, in that study, the fiberscopic image recordings occurred after the audio

recordings and as stated by the author, simultaneous recordings are needed to

verify the hypothesis. In Section 4.3, the spectral correlates of voice quality in

relation to the new high-speed imaging data are examined in more detail.

2.3.3 Glottal area or glottal flow?

By definition, the glottal flow, as modeled by the voice source models reviewed

in Section 1.2.1, measures the volume velocity of the air produced at the glottis.

The glottal area is the area of separation between the vocal folds as projected by

the image of the glottis. Although the exact relationship between the glottal area

and the glottal flow is still unclear, it is generally thought to be of a nonlinear

nature. Studies dealing with the relationship, such as in [AF82], typically use

impedance networks to model the effects of the glottal area on the glottal flow.

However, without direct empirical evidence, the results of the impedance network

experiments remain unverified. In a more recent study ([HM07]), which used
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computationally intensive fluid modeling, it was found that while the acoustic

source pulse shapes differed from the glottal area waveforms, the differences were

small relative to the larger differences across the waveforms. Thus, it is reasonable

to compare models of glottal area (like the new proposed source model) to models

of glottal flow (like the Rosenberg and LF models).

2.4 Evaluation of the new source model

Evaluation of the proposed new source model was done by fitting the model to

the high-speed imaging data. The averaged glottal area waveforms obtained in

Section 2.2.3 were first normalized to have a minimum value of 0 (i.e. with DC-

offset removed) and a maximum value of 1. For each phonation by each subject,

the proposed model was fitted to the normalized source pulses by using a mean

squared error (MSE) criterion. For comparison purposes, the LF model was also

fitted to the glottal area waveforms for each subject. Table 2.2 shows the MSEs

for each subject’s phonations. As expected, visual inspections (see Appendix B

for the model fitting performance of the proposed new model) showed that the

proposed new source model was able to provide a better fit to the glottal area

waveforms in all cases. This was not surprising given that the proposed model

was derived from these very same glottal area waveforms while the LF model

was derived from a different set of data (inverse-filtered flow recordings). More

interesting are the cases where the MSEs differ the most; two such cases are shown

in Figure 2.6. The left panel is from the low F0, pressed phonation from subject

FM1 and the right panel is from the low F0, normal phonation from subject

M2. It can be seen in these two cases, that the pulse peak is skewed towards

the glottal onset, resulting in the opening phase duration being shorter than the

closing phase duration. At the pulse onsets and offsets, the quick transitions to
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the zero amplitude are unable to be modeled by the slower moving LF model.

For comparison, an example of a case where both the proposed and LF models

had approximately equivalent MSEs is shown in Figure 2.7. This example is from

the low F0, normal phonation from subject FM3. In this case, the pulse peak

is approximately at the center and the pulse onset and offset consist of more

gradual changes.

Table 2.2: Model fitting results for each phonation from each speaker. Results are

shown for the proposed/LF models. ‘–’ denotes data was not available for a particular

phonation.

Voice quality Subjects (MSE of proposed/LF model)

FM1 FM2 FM3 M1 M2 M3

lo
w

F
0 pressed .002/.026 .000/.005 .001/.003 –/– .001/.005 .002/.014

normal .001/.010 .000/.006 .001/.001 –/– .000/.035 .005/.020

breathy .000/.017 .001/.013 .000/.008 –/– .001/.027 .002/.021

no
rm

al
F

0 pressed .002/.012 –/– .004/.008 .001/.011 .001/.015 .003/.012

normal .002/.015 .001/.008 .001/.006 .001/.014 .001/.006 .002/.005

breathy .001/.006 .001/.008 .001/.001 .001/.017 .001/.025 .001/.004

hi
gh

F
0 pressed .000/.003 .000/.001 .001/.013 .000/.002 .000/.006 .001/.006

normal .003/.010 .002/.008 .004/.010 .000/.007 .005/.023 .000/.002

breathy .000/.010 .000/.016 .001/.004 .000/.023 .000/.029 .000/.025

The proposed new source model will also be evaluated in Chapter 3 by a source

estimation technique which used a codebook of source signals. Comparisons with

the LF model will show that in most cases, the proposed new model provided a

more accurate estimate of the source signal.
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Figure 2.6: Model fitting performance for the phonations from subject FM1 (left

panel: low F0, pressed) and subject M2 (right panel: low F0, normal).
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Figure 2.7: Model fitting performance for the low F0, normal phonation from subject

FM3.
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2.5 Summary and discussion

In this chapter, high-speed video recordings of the glottal folds were extracted and

analyzed to produce glottal area waveforms. The analysis showed that there were

some properties of the area waveforms which could not be modeled by existing

source models. By modifying the popular LF model, a new four parameter source

model was created which was able to better account for the properties observed

in the glottal area waveforms.

The quantitative comparisons between the LF and the new proposed source

model are not so much a measure of which model is the most accurate, since

the models were derived from different data sets with different purposes, but an

indication of how existing source models can be used to motivate the creation of

newer models.

In source modeling, many unsolved issues still remain. Previous source models

were created based on indirect observations of the source, and as such modeled

the glottal flow. Improved technology has allowed easier access to observe the

vibrating vocal folds, and the source model proposed in this chapter models the

glottal area. The exact relationship between the glottal flow and the glottal

area waveform, which has been hypothesized to be non-linear and small in effect,

remains an open question. Also unsolved is the ubiquitous glottal gap (DC-

offset) issue. While perceptual studies suggest that glottal gaps introduce noise,

the exact nature of how the noise is created is not well known. More data from

the direct observation of the glottis is needed to resolve these issues.
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CHAPTER 3

A Codebook Search Technique for Estimating

the Voice Source

Voice source estimation is a non-trivial task which requires the separation of the

source signal from the speech signal. Traditional methods have employed inverse-

filtering or joint estimation techniques to extract the source signal. However,

these techniques rely on the assumption that speech production is a linear and

time-invariant process, which it is not. The non-linear interactions between the

source and the vocal tract can result in inaccuracies which may be reflected in

both the source signal and vocal tract filter estimates. In this chapter, an analysis-

by synthesis technique is introduced which, different from previous methods,

effectively performs inverse-filtering with the source signal spectrum, instead of

the vocal tract spectrum. Results are evaluated using direct glottal observations

from the high-speed imaging described in Chapter 2.

3.1 Voice source estimation

According to the linear acoustic theory of speech production [Fan70], speech sig-

nals are generated by a source or excitation signal filtered by the vocal tract

transfer function (VTTF). In many applications, we are interested in the un-

derlying acoustic features of the source signal because it can carry information
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regarding stress (or emphasis), emotional status, prosodic events, or even an un-

derlying disease of the vocal cords. Estimation of the source signal is a non-trivial

process as it requires separating the source from the VTTF. Typical voice source

estimation methods (reviewed in Section 1.3) involve the initial estimation of the

VTTF, followed by inverse-filtering of the speech signal to obtain a residual signal

which is then used to map to a source model. This method is often used in speech

coding, where the error criterion is usually based on the re-synthesized output

and not on the accuracy of the estimated source or vocal tract. Figure 3.1 shows

the typical inverse-filtering process. It can be seen that the resulting residual sig-

nal appears more like random noise1 than the smooth plot shown in Figure 2.1.

This is due to a number of reasons: (1) there may be actual aspiration noise in

the phonation, although this is generally minimal in modal-type phonations, (2)

the process relies heavily on an accurate estimation of the vocal tract filter, and

(3) the process enforces the linear model onto the vocal tract, leaving the resid-

ual signal to carry the non-linear source-tract interaction information. Another

difficulty with source estimation is the lack of a “ground truth” with which to

validate algorithms. Often, calibrations are performed with analysis-by-synthesis

results, which minimizes the re-synthesized output error, or with EGG signals,

which measures the glottal contact area and is only partly related to the voice

source signal.

In [IC04], the problem of accurately estimating the VTTF was addressed

by using variable window lengths to better capture the vocal tract parameters

in the glottal closure regions. The resulting estimated source waveforms were

comparable to waveforms obtained from electroglottography (EGG). Joint esti-

mation techniques such as [FMS01], [PY08] and [JI05] attempt to estimate the

1In code excited linear prediction (CELP) based speech codecs, Gaussian noise is actually
used as the excitation signal.
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Figure 3.1: A typical inverse-filtering process. The residual signal is then used to

map onto a source model.

VTTF and voice source model parameters simultaneously. The basic assumption

in the two source estimation methods (inverse-filtering and joint estimation) is

that speech production can be approximated by a linear time-invariant process.

However, it is well known that during speech production, source-tract coupling

occurs which can result in non-linear effects. In the inverse-filtering method,

these non-linearities usually appear in the residual signal, which is then used for

source-model fitting. In the joint-estimation method, the non-linearities may be

incorporated into both the source parameters and the VTTF.

In order to minimize errors in the source signal estimation, it is necessary

to switch the roles of the source model and the VTTF in the standard inverse-

filtering process. In this chapter, a method is proposed in which the voice source

is used in inverse-filtering, resulting in a residual signal which is used to fit to

the parameters of the VTTF. By reversing the roles of the VTTF and source,

it is hoped that the non-linear effects and other noises can be mapped onto the

parameters of the VTTF, thereby providing a more accurate source estimate.
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3.2 Data

The audio data used in this section are the same as those which were recorded

synchronously with the high-speed imaging data described in Section 2.2. The

measured voice source waveforms used in this chapter are also the same as those

described in Section 2.2.3, but with the DC-offset removed as no current time-

domain source model has the ability to model this offset.

As in Chapter 2, the male subjects are denoted by M1–3 and the female

subjects are denoted by FM1–3.

3.3 Method

The linear source-filter model of speech production (reviewed in Section 1.2)

states that for short-time periods, speech, s(t), can be approximated as a cascade

of linear systems involving a source function, u(t), a vocal-tract transfer function,

v(t), and a differentiation which is usually incorporated into the source function:

s(t) = u(t) ∗ v(t)

S(ω) = U(ω)V (ω)

Taking the magnitudes of each system, V (ω) can be written (in dB) as:

|V (ω)| = |S(ω)| − |U(ω)| (3.1)

Eq. 3.1 implies that if a source spectrum was known, the vocal tract spectrum

could be calculated exactly. However, estimation of the spectrum, |S(ω)|−|U(ω)|,
is not robust, and can often result in spurious values near the valleys of S(ω).

More robust are the harmonic magnitudes, as used in [FMS01], denoted by

|S(ωHk)|, |U(ωHk)| and |V (ωHk)|, where ωHk = 2πkF0/Fs, k ∈ Z
+. Further-

more, the effects of the overall signal power can be neglected if the harmonic
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Figure 3.2: The main source estimation procedure.

magnitudes are normalized to the first harmonic magnitude; e.g. in dB, Sn =

|S(ωH1)| − |S(ωHn)|.

The main block diagram of the method is shown in Figure 3.2. In this method,

a codebook of source signals is used to implicitly inverse-filter an input signal,

leaving the residual signal for the VTTF and other non-linear source-tract in-

teractions. In the algorithm, the harmonic magnitudes of an input signal are

calculated and normalized to the first harmonic magnitude; this is denoted by Sn

(for the n-th normalized harmonic magnitude) in Figure 3.2. Sn was calculated

using the pitch information extracted by the STRAIGHT algorithm [KCP98]. A

Hamming window consisting of 4 pitch periods was used to calculate the spectrum

of the input signal; hence, the window length was different for each speaker. For

this work, the number of harmonics used was in the range 0 to 2.6 kHz; e.g., for

a pitch period of 100 Hz, 26 harmonics would be used. This number is arbitrary

and in practice, depends only on the number of harmonics that can be reliably

estimated from the spectrum.

The codebook of source models can be created using any source model. The

block diagram for the codebook generation is shown in Figure 3.3. Grid searches

are first performed on the model parameters to find valid voice source waveforms.
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This is more critical for models such as the LF or Fujisaki-Ljungqvist models as

not all combinations of parameters can be solved to return a continuous signal.

The valid source waveforms are then differentiated if necessary (to incorporate lip

radiation effects) and used to calculate the harmonic magnitudes. The harmonic

magnitudes are normalized to the first harmonic magnitude before being stored

in a codebook; these are denoted by U1
2 , U1

3 , . . . , Uk
n in Figure 3.3. In this chapter,

the LF model and the proposed new model in Chapter 2 were used to create two

separate codebooks for comparison.

The LF model’s codebook was generated by performing a grid search on each

of the four parameters (te, tp, ta and Ee) at the following resolutions: te from

0.3 to 0.98 at increments of 0.01, tp from 0.01 to 0.95 at increments of 0.01,

ta from 0.01 to 0.95 at increments of 0.01 and Ee from 0.1 to 5 at increments

of 0.1. Since not every combination of the four parmeters constituted a valid

glottal flow derivative waveform, the resulting signals were checked to ensure they

were physically realizable. The number of entries in the codebook was reduced

by performing a correlation analysis and discarding those entries which had a

correlation coefficient of 0.99 or more. This resulted in a final codebook size of

1726 entries.

The proposed new model’s codebook was generated with the following pa-

rameter resolutions: OQ from 0.35 to 1.00 at increments of 0.01, α from 0.35 to

0.5 at increments of 0.05, Sop from 0.3 to 0.7 at increments of 0.2, and Scp from

0.3 to 0.7 at increments of 0.2. This produced a codebook of size 2179 entries

after the correlation analysis. The asymmetry coefficient, α, only ranged half of

its possible values due to the property of the Fourier transform for time-reversed

signals; e.g. for a signal h(t) with periodicity T0, |F{h(t)}| = |F{h(T0 − t)}|,
where F denotes the Fourier transform, and a source with α = 0.4, Sop = 0.6
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Figure 3.3: Block diagram showing the method for generating the codebook. Any

voice source model can be used to generate the codebook.

and Scp = 0.5 is a time-reversed version of a source with α = 0.6, Sop = 0.5 and

Scp = 0.6 for any OQ value. While it is not yet clear what perceptual difference,

if any, can be noticed between a source and its time-reversed variant, a simple

analysis-by-synthesis test, in the time-domain, was employed at the end of the

main algorithm to decide which version of the source should be selected.

For each entry in the codebook, denoted by Uk
n for the k-th source entry and

the n-th normalized harmonic magnitude, subtraction with Sn is performed to

produce an estimate of the normalized harmonic magnitudes of the vocal tract,

i.e. Vn = Sn − Uk
n . A constrained nonlinear optimization, using the active-set

quadratic programming method, is then performed on Vn to find an estimate of

the formant frequencies and their bandwidths as well as an error value. Since the

speech data used in this work involved just vowels and the number of harmonics

used ranged only up to 2.6 kHz, a 3-formant (6-pole) model was used for the

vocal tract:

|V (ω)|2 =
3∏

p=1

1(
1 − 2rp cos(ω − ωp) + r2

p

) (
1 − 2rp cos(ω + ωp) + r2

p

)
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where rp = e−πBp/Fs , ωp = 2πFp/Fs, Fs is the sampling frequency and Fp and Bp

are the formant frequencies and their respective bandwidths. Note that, different

from other source estimation methods, the optimization here is over the VTTF

parameters and not the voice source. The optimization criterion is a weighted

least squares error function:

Ek = min
Vn

N∑
n=2

(
Sn − Uk

n − Vn

)2 · Wn

where Vn = |V (2πF0)|2−|V (2nπF0)|2, N is the number of harmonics up to 2.6 kHz

and Wn is a weighting function used to emphasize the lower frequency harmonic

magnitudes. For the results presented in this chapter, Wn was empirically defined

as:

Wn =

⎧⎪⎨
⎪⎩

212−n, 2 ≤ n ≤ 12

1, n > 12

The constrained optimization on Vn to determine the vocal tract parameters

require lower and upper bounds on the formant frequencies and their respec-

tive bandwidths. In this work, three methods of determining formant frequency

bounds were tested. The first method used the Snack sound toolkit [Sj04] to

estimate the formants frequencies with these settings: window length of 25 ms,

frame length of 1 ms and pre-emphasis of 0.98. These formant frequencies were

then averaged across a subject’s phonations. The second method used formant

frequencies which were manually extracted from the spectrum of a subject’s nor-

mal phonation with normal F0. Although the subjects were asked to produce

the vowel /i/ for each recording, the end result was always different due to the

positioning of the laryngoscope. For 3 male and 2 female subjects, the produced

vowels were closer to an /ε/ vowel, while for the other female subject, the re-

sulting vowels were closer to the /æ/ vowel. Because it may impractical to use
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manually-derived formant constraints in applications, the third method used con-

stant average formant values for known vowels (/æ/ for subject FM3 and /ε/ for

the other subjects), as listed in [PB52], as estimates.

Using the Snack-estimated, manually-extracted and constant-based formant

frequency values, the lower and upper bounds for the constrained optimiza-

tion were set to ±150 Hz from the F1 values obtained by the three methods

(Snack/manual/constant-based), ±250 Hz for the F2 values obtained by the three

methods, and ±400 Hz for the F3 values obtained by the three methods. Table 3.1

shows the optimization constraints for the formant frequencies in terms of each

subject for the three methods; e.g. the Snack-estimated value for F1 for subject

FM1 was 351 Hz, therefore the lower optimization constraint was set to 201 Hz

and the upper constraint set to 501 Hz. The large differences between the Snack-

estimated and manually-extracted F1 values can be attributed to the well-known

deficiencies of LPC-based formant trackers for high F0 phonations. As shown in

Table 2.1, the average F0 values for high F0 phonations range from 288–426 Hz

for females and 201–289 Hz for males. In these cases, the formant-frequencies

were often biased towards the harmonic positions, due to the increased spac-

ing between harmonics which effectively lowers the formant “resolution” in the

spectrum.

The bandwidth constraints were based on the formant-bandwidth mapping

formula in [HM95] since the Snack-estimated bandwidths had large variances.

The algorithm shown in Figure 3.2 requires that all the source models be

processed before the final source candidate is selected. For large codebooks, this

can be very time-consuming. To reduce the overall processing time, two iterations

of the algorithm can be used, as shown in Figure 3.4. In the first iteration,

shown with solid lines, a smaller codebook is used to find the approximate source
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Table 3.1: Optimization constraints for formant frequencies for each subject.

Snack-based lower/upper bounds (Hz)

Subject F1 F2 F3

FM1 201/501 1466/1766 2116/2916

FM2 196/496 1331/1831 2437/3237

FM3 464/764 1454/1954 2550/3350

M1 287/587 1433/1933 2300/3100

M2 229/529 1310/1810 1999/2799

M3 176/476 1422/1922 2423/3223

Manual-based lower/upper bounds (Hz)

Subject F1 F2 F3

FM1 450/750 1430/1930 2115/2915

FM2 440/740 1650/2150 2350/3150

FM3 680/980 1620/2120 2550/3350

M1 380/680 1550/2050 2300/3100

M2 410/710 1350/1850 2000/2800

M3 380/680 1350/1850 1900/2700

Constant formant-based lower/upper bounds (Hz)

Subject F1 F2 F3

FM1–2 460/760 2080/2580 2590/3390

FM3 700/1000 1800/2300 2450/3250

M1–3 380/680 1590/2090 2080/2880
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Figure 3.4: Block diagram showing the two iterations of the source estimation method;

solid and dashed lines represent the first and second iteration, respectively. The code-

book sizes are based on the proposed new source model described in Chapter 2.
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parameters. These parameters are then used to select source entries, which are

within a certain parameter distance, from the main codebook. A second iteration

of the algorithm, shown in Figure 3.4 with dotted lines, is then performed using

these entries.

In this work, the smaller LF model codebook was created by averaging entries

in the main codebook which had OQ values of 0.35, 0.45,. . . ,0.95. This resulted

in a codebook with 13 entries. After the first iteration of the algorithm, the

source with the smallest error, denoted by m, was used to select the entries from

the main codebook for the second iteration. Assuming that the OQ for entry m

was OQm, then all entries in the main codebook which had OQ > OQm−0.1 and

OQ < OQm + 0.1 were selected for the second iteration. The smaller codebook

for the proposed new source model was created with these parameter settings:

OQ from 0.4 to 1.0 at increments of 0.1, and α from 0.4 to 0.5 at increments

of 0.1. Sop and Scp were both set to a constant value of 0.5. This resulted in

a codebook of 14 entries. Assuming that the OQ and α values of the selected

source entry at the end of the first iteration were denoted by OQm and αm, the

second iteration used source entries from the main codebook which had an OQ

value within OQm ± 0.1 and an α value within αm ± 0.05.

3.4 Results

The results of the voice source estimation accuracy were quantified by compar-

ing the shapes of the measured glottal pulses with estimated glottal pulses. The

estimated glottal shapes were from the two source models (LF/proposed), with

the three different formant frequency constraints (Snack/normal/constant). Ta-

ble 3.2 shows the mean squared error (MSE) values averaged over a subject’s total

phonations. It can be seen that nearly all of the averaged MSEs are lower for
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Table 3.2: Results for each subject and the formant constraint method (Snack,

manual and constant based). Values are the MSEs, averaged over all of a subject’s

phonations, for the LF/proposed new source models.

Formant constraint type

Subject Snack Manual Constant

FM1 .072/.048 .091/.035 .096/.042

FM2 .105/.049 .047/.026 .045/.026

FM3 .063/.087 .055/.043 .047/.025

M1 .079/.041 .072/.029 .072/.029

M2 .071/.026 .070/.029 .085/.028

M3 .054/.024 .058/.025 .058/.025

the proposed new source model than the LF model. This is not unexpected due

to the deficiencies of the LF model which were discussed in Chapter 2. Another

trend which can be seen is that the mean MSEs from the Snack-based formant

constraints were on average higher than those from the manual or constant-based

formant constraints. These results show the importance of having an accurate

source model and also having reasonable formant frequency constraints.

In the rest of this section, the results for the proposed new source model

will be analyzed in further detail to see which types of phonations resulted in the

lowest and highest estimation errors. The MSE values from the source estimation

for individual subjects can be found in Appendix C. With only 6 subjects, there

was not enough data to perform statistical analysis.

Visual inspections of the estimated source waveforms (see Appendix C) show

that, on average, the source estimation algorithm was able to find the approx-

imate OQ for each phonation, but it could be seen there were some estimation
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Table 3.3: Correlation coefficients (r) for the model-fitted source parameters and the

estimated source parameters from the Snack-, manual-, and constant-based formant

frequency constraints. The significance levels are in parenthesis, where ‘–’ denotes a

particular correlation was not statistically significant.

Model-fitted Estimated

Snack-based Manual-based Constant-based

OQ 0.616 (0.000) 0.722 (0.000) 0.742 (0.000)

α 0.026 (–) -0.005 (–) -0.013 (–)

Sop 0.220 (–) 0.369 (0.008) 0.358 (0.011)

Scp 0.087 (–) 0.088 (–) 0.200 (–)

errors with the other source model parameters (α, Sop and Scp). Using the model-

fitted parameters from Section 2.4, correlation analyses were performed on the

estimated source parameters for the three types of formant constraints. Table 3.3

shows the correlation coefficients (r) and the significance levels (where the cor-

relation was statistically significant). It can be seen that the estimated OQ

parameter has the highest correlations, with Sop also having some correlation for

the manual- and constant-based estimations. The lack of any correlations for α

and Scp suggests that changes in these parameters may not be manifested in the

harmonic magnitudes.

Figure 3.5 shows the MSE values from the source estimation, averaged over the

phonations for each gender in terms of the voice quality and formant constraint

type. For the female subjects, it can be seen the Snack-based formant constraints

had averaged MSE values which were greater than the other two type of formant

constraints. This is not surprising, given the well-known issues associated with

LPC-based formant estimation for high-pitched voices. For the male subjects,

the averaged estimation errors appear to increase from the pressed phonations
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Figure 3.5: MSEs averaged across all phonations for each gender in terms of the voice

quality (pressed, normal and breathy) and type of formant constraint (Snack, manual

and constant).
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Figure 3.6: MSEs averaged across all phonations for each gender in terms of the

F0 type (low, normal and high) and type of formant constraint (Snack, manual and

constant).
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Figure 3.7: Phonation with the lowest source estimation error (MSE = 0.0018). The

measured source waveform was taken from the high F0, pressed phonation of subject

FM1. The estimated source waveform (dashed) was from the manual-based formant

constraints method.

to the normal and breathy phonations, although this was not seen for the female

subjects. The manual- and constant-based formant constraints had similar error

values for both genders.

Figure 3.6 shows the MSE values grouped in terms of the F0 type for each

gender. Again, it can be seen that, for both genders, the high F0 phonations had

the higher errors values, with the Snack-based formant constraints resulting in

the highest error values within these phonations.

Figure 3.7 shows an example of a phonation with a low source estimation error

(MSE = 0.0018). The measured source waveform was taken from the high F0,

pressed phonation of subject FM1 and the estimated source waveform (shown in

the dashed line) was from the manual-based formant constraint method. Visual

inspections of other estimated source waveforms showed that for the pressed
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Figure 3.8: Phonation with the highest source estimation error. The measured source

waveform was taken from the high F0, breathy phonation of subject FM3 with the

DC-offset removed. The dashed line shows the estimated waveform using Snack-based

formant constraints (MSE = 0.2995) and the dotted line shows the estimated waveform

using constant-based formant constraints (MSE = 0.0116).

57



cases, when the estimated OQ was close to the measured OQ, the estimated

source always provided a better fit than for other voice qualities. This may be

because in most pressed phonations, the OQ is smaller than normal and there is

little time to change the vocal fold configurations to produce source pulse shapes

with non-symmetrical attributes.

In contrast, Figure 3.8 shows an example of a phonation with a high source

estimation error. The phonation was from subject FM3’s high F0, breathy utter-

ance. The dashed line shows the estimated waveform using Snack-based formant

constraints, with MSE = 0.2995, and the dotted line shows the estimated wave-

form using constant-based formant constraints, with MSE = 0.0116. This ex-

ample illustrates a problem which can occur with incorrect formant constraints,

where the true formant frequency lies outside the range specified by the con-

straints. In this case, the formant frequency constraints were too low, and the

first formant was able to simulate the low frequency source information. When

the higher constant-based formant constraints were used, a more accurate source

was estimated.

3.5 Summary

In this chapter, an analysis-by-synthesis technique in the frequency domain is de-

scribed which utilizes a codebook-search to effectively inverse-filter speech signals

with the voice source signal. While the results are promising with respect to the

source parameters, OQ, and to a lesser extent, Sop, the estimation errors with

the remaining parameters, α and Scp, suggest that not all parameters affect the

harmonic magnitudes of the speech spectrum. Although this source estimation

algorithm does not require precise formant frequency values, the analysis of the

MSEs show that the formant frequency constraints need to contain the actual

58



formant frequencies in order to produce reasonable source estimates.
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CHAPTER 4

Acoustic Correlates of Voice Quality

Voice quality is the component of speech which characterizes a speaker’s voice,

encompassing the effects of age, gender, prosody, and speaking styles. As shown

in Chapter 3, precise voice source information extraction from the speech signal

is not a solved problem. Instead of explicitly finding the voice source signal, we

can use cues and measures which are correlated with certain aspects of the voice

source. In this chapter, a new Matlab program named VoiceSauce is introduced

which simplifies the calculation of these measures. This program is then used in

three applications: voice source analysis with respect to voice quality correlates,

gender identification, and prosody analysis.

4.1 Acoustic measures related to voice quality and to the

voice source

Some of the more commonly used acoustic measures were reviewer in Section 1.4.1

and are listed in Table 4.1. In addition to these measures, the uncorrected version

of the harmonic measures are also sometimes used; e.g. H1 − H2 instead of

H∗
1 − H∗

2 . These are useful for data consisting of the same vowels.

F0 is, by definition, a correlate of pitch accents and boundary tones. Pitch

accents and boundary tones are deviations of the F0 contour from a speaker’s

norm; this can be either a drop in F0, as would happen in the case of a low pitch
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accent or low boundary tone, or a rise in F0, as in a high pitch accent or high

boundary tone.

The measure H∗
1 − H∗

2 and its uncorrected version, H1 − H2, has often been

thought of as a correlate of open quotient (OQ), the proportion of time the vocal

folds are open during a cycle of phonation. Inverse-filtered airflow and EGG

measurements were used in [HHP95] to show a moderate correlation between

estimated H1−H2 and OQ values. Since pressed and breathy voices are generally

thought to be characterized by small and large OQ values respectively ([Huf87,

Fis67, SL90, Esp03]), H∗
1 − H∗

2 has also been used as a correlate of breathiness.

This relationship was partly supported by perceptual studies ([HCE94, KK90,

Esp06]) which showed that listeners were more likely to judge phonations with a

larger first harmonic magnitude as being breathy. However, in [HdD01], analysis

of the LF model parameters showed that H∗
1 − H∗

2 was dependent not only on

OQ, but also on the asymmetry coefficient. In another study ([KGI08]), it was

shown that the OQ values obtained from high-speed imaging were only weakly

correlated with H∗
1 − H∗

2 values.

In [Han97], analysis of circuit models suggested that the spectral tilt mea-

sures H∗
1 − A1 and H∗

1 − A∗
3 may be correlated with the speed of closure of the

vocal folds. It was speculated that lower spectral tilt values should correspond

to more abrupt glottal closures and higher values may be an indication of non-

simultaneous closure. Fiberscopy of a small subset of speakers confirmed this to

be the case, although in that study, the fiberscopic images were not collected si-

multaneously with the acoustic data. The measures H∗
2 −H∗

4 and H∗
1 −A∗

2 are also

thought to be correlated with the source spectral tilt, at the mid-frequency range

([KGB07]). However, these correlations have not been verified experimentally.

Energy is, by definition, related to loudness and voice intensity, and may be
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correlated with vocal effort. Other studies have shown that energy can be a good

predictor of pitch accents and intonational boundaries ([CHC05, RH06, Sli07]).

The measures CPP and HNR have been perceptually related to modality

and breathiness ([HCE94, Kro93, Esp06]). However, it is not clear how these

measures are related physiologically to the voice source or how they affect the

voice source model parameters.

Table 4.1: List of acoustic measures though to be related to the voice source and/or

voice quality

Measure Relation to voice quality or voice source

F0 Correlated with pitch accents, boundaries and stress.

H∗
1 − H∗

2 Thought to be correlated with breathiness and open quotient (OQ,

the proportion of time the vocal folds are open during phonation).

H∗
1 − A∗

3 Thought to be correlated with source spectral tilt and hence, the rate

of closing of the vocal folds.

Energy Related to loudness and voice intensity.

H∗
2 − H∗

4 ,

H∗
1 − A∗

1,

H∗
1 − A∗

2

Thought to be correlated with source mid-frequency tilt.

CPP Cepstral peak prominence: thought to be correlated with modality

vs. breathiness.

HNR Harmonic-to-noise ratio: detects the amount of noise (turbulence or

otherwise) in the speech signal.
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4.2 VoiceSauce - a program for voice analysis

VoiceSauce is a customizable application, implemented in Matlab, which pro-

vides automated acoustic measures over time from audio recordings. The mea-

sures currently computed are: F0, H1(
∗), H2(

∗), H4(
∗), A1(

∗), A2(
∗), A3(

∗),

H1(
∗) − H2(

∗), H2(
∗) − H4(

∗), H1(
∗) − A1(

∗), H1(
∗) − A2(

∗), H1(
∗) − A3(

∗), En-

ergy, CPP, HNR, formant frequencies F1–F4, and formant bandwidths B1–B4.

VoiceSauce takes as input a folder of .wav files, and for each input .wav file pro-

duces a Matlab file with values every frame for all measures. It can operate on

the whole input file, or over segments delimited by a Praat ([BW10]) textgrid file.

VoiceSauce then takes these Matlab outputs, optionally along with electroglotto-

graphic (EGG) measurements from PCQuirerX, and provides condensed outputs

in text format; alternatively it can write the Matlab outputs to the format used

by the Emu Speech Database system [CH96]. VoiceSauce and its documentation

can be obtained freely at: http://www.ee.ucla.edu/~spapl/voicesauce

4.2.1 F0 and formant calculations

F0 values in VoiceSauce can be calculated with the STRAIGHT algorithm

[KCP98], the Snack sound toolkit [Sj04], or with an external application. The

parameters, which are user-configurable in the settings dialog, are the window

length, frame shift, maximum F0 value, and minimum F0 value.

Formant frequencies and bandwidths can also be calculated with the Snack

sound toolkit or with an external application. The window length, frame shift

and pre-emphasis factor are the user-configurable parameters.
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4.2.2 Harmonic magnitudes and spectral amplitude calculations and

corrections

The harmonic magnitudes, H1, H2 and H4, are calculated by using the F0 in-

formation to find the spectrum maximum near the frequencies F0, 2F0 and 4F0.

A variable window length corresponding to 3 pitch periods, as determined by

the F0 value at a particular point, is used to calculate the spectrum. The data

are first multiplied by a Hamming window to reduce the effects of inaccurate F0

estimates. Because only 3 harmonic magnitudes are required in each frame of

data, optimization on a section of the spectrum is used instead of calculating the

entire spectrum for each frame. The optimization seeks to find the maximum

spectrum value around a particular frequency and is shown in Eq. 4.1 for the

first harmonic, H1.

H1 = max
0.9f0≤f≤1.1f0

20 log

(∣∣∣∣∣
N∑

n=0

s(n)e−2πjnf/Fs

∣∣∣∣∣
)

(4.1)

where s(n) are the data within a frame with window length N and f0 is the

corresponding pitch frequency for that particular frame. The search range is

±10% of the given pitch frequency.

The spectral amplitudes at the formant frequencies, A1, A2 and A3 were

calculated in a similar way to the harmonic magnitudes, but used F1, F2 and

F3 values instead of F0 values in the spectral maximum search. In this way, the

amplitudes found will correspond to the largest harmonic amplitudes near the

formant frequencies.

Correction for the effects of the vocal tract are performed using the following

formula from [IA04]:

H∗ = H(ω) −
N∑

i=1

10 log10

(1 − 2ri cos(ωi) + r2
i )

2

(1 − 2ri cos(ω + ωi) + r2
i ) (1 − 2ri cos(ω − ωi) + r2

i )

64



where H(ω) is the magnitude of the actual signal spectrum (in dB) at frequency ω,

N is the number of formants, ri = e−πBi/Fs and ωi = 2πFi/Fs. Fs is the sampling

frequency, and Fi and Bi are the formant frequency and bandwidth for the i-

th formant, respectively. Since the bandwidths from Snack have relatively large

variances, the bandwidths are derived from the formant-to-bandwidth mapping

formula in [HM95]:

Bi = S · (k + (x1 · Fi) + (x2 · F 2
i ) + (x3 · F 3

i ) + (x4 · F 4
i ) + (x5 · F 5

i ))

where Fi is the formant frequency and k = 165.327516, x1 = −6.73636734×10−1,

x2 = 1.80874446 × 10−3, x3 = −4.52201682 × 10−6, x4 = 7.49514000 × 10−9

and x5 = −4.70219241 × 10−12 for Fi < 500 Hz, and k = 15.8146139, x1 =

8.10159009 × 10−2, x2 = −9.79728215 × 10−5, x3 = 5.28725064 × 10−8, x4 =

−1.07099364 × 10−11 and x5 = 7.91528509 × 10−16 for Fi ≥ 500 Hz. The scaling

factor S is defined as S = 1 + 0.25
(

F0−132
88

)
where F0 is the pitch frequency. If

selected, the harmonic magnitudes and spectral amplitudes are all corrected for

the effects of formants F1 and F2. Measure A∗
3 is further corrected for the effects

of formant F3.

4.2.3 Energy calculation

For an input signal s(t), the traditional energy measure is s2(t). However, for a

fixed length analysis window, this measure would be correlated with F0; i.e. the

higher the F0, the more pulses in the signal, and hence, the larger the energy value.

To reduce this correlation, energy calculations in VoiceSauce are normalized for

the effects of F0. This is done by using a variable window length of 5 pitch

periods, as determined by the F0 value at the particular time instance.
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4.2.4 CPP and HNR calculation

Cepstral peak prominence calculations are based on the algorithm described in

[HCE94], while the harmonic to noise ratio measures are derived from [Kro93].

Similar to the energy measure, a variable window of length equal to 5 pitch

periods is used for the calculations. After multiplying the data with a Hamming

window, the data are then transformed into the real cepstral domain. The CPP is

found by performing a maximum search around the quefrency of the pitch period

(1/F0). This peak is normalized to the linear regression line which is calculated

between 1 ms and the maximum quefrency. The HNR measurements are found

by liftering the pitch component of the cepstrum and comparing the energy of

the harmonics with the noise floor. In VoiceSauce, the HNR is calculated for the

frequency ranges 0–0.5 kHz, 0–1.5 kHz and 0–2.5 kHz and denoted by HNR05,

HNR15 and HNR25, respectively.

4.3 Application I: Voice quality analysis with respect to

acoustic measures

Acoustic measures provide a way to analyze the voice source without explicitly

estimating the voice source signal. These measures are typically found in the

spectral domain and can be used in voice quality applications such as prosody

analysis and detection, speaker identification, as well as various medical appli-

cations. The measures reviewed in Section 1.4.1 are the most commonly used

measures in studies of the voice source and voice quality. However, with the

exception of H∗
1 − H∗

2 , no other acoustic measure has been strongly associated

with the physiological attributes of the voice source over a wide range of voice

qualities.
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The linkages between the voice source signal, the perceived voice quality and

measures related to the voice source are, to date, not well understood. This

general disconnect can be mainly attributed to the lack of data from the direct

observations of the voice source, which makes it difficult to form the connections

between the voice source and their acoustic correlates. In this section, high-speed

imaging of the vocal folds along with simultaneous audio recordings are used to

test the relationships between three voice qualities (pressed, normal and breathy),

the voice source shape, and the acoustic measures related to the voice source.

4.3.1 Data

The data used in this work are the same as those described in Section 2.2 and

summarized here. Synchronized audio recordings and high-speed imaging of the

vocal folds were collected from six subjects (3 males, denoted by M1–3, and 3

females, denoted by FM1–FM3). The subjects were asked pronounce the vowel

/i/ while varying their F0 (low, normal and high) and voice quality (pressed,

normal and breathy) in a quasi-orthogonal way; this resulted in 9 phonations for

each subject. One male subject, M1, was unable to produce a low F0 phonation

for any voice quality and one female subject, FM2, was unable to produce a low

F0, normal phonation. The total number of phonations was 50.

4.3.2 Methods

The voice source signal, as represented by the glottal area waveform, was obtained

through the process described in Section 2.2.3. These waveforms are then fitted

to the proposed new source model specified in Section 2.3, allowing the voice

source to be compactly represented with four parameters: OQ (open quotient),

α (asymmetry coefficient), Sop (speed of opening phase), and Scp (speed of closing
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Table 4.2: Occurrences of glottal gaps in terms of speaker, F0 type (low, normal and

high) and voice quality (pressed, normal and breathy). ‘–’ denotes an entry where no

speaker produced a glottal gap.

F0 type Voice quality

Pressed Normal Breathy

Low – FM1, FM2, FM3 FM1, FM2, FM3, M2

Normal FM3 FM2 FM1, FM2, FM3, M1, M2, M3

High M1 M3 FM1, FM2, FM3, M1, M2, M3

phase). For this study, the model parameter OQ was defined as the time from the

first opening instant to the onset of maximum closure, divided by the fundamental

period; this definition ignores the glottal gaps which were recorded separately.

The phonations with incomplete glottal closures, as represented by a DC-

offset in the glottal area waveforms (see Appendix A), were manually marked.

The occurrences of the glottal gaps are shown in Table 4.2. On average, it can

be seen that the female subjects had more phonations with glottal gaps than

the male subjects and the breathy phonations result in more incomplete glottal

closures than the other voice qualities.

Before calculating the acoustic measures, the audio recordings were all normal-

ized to the maximum amplitude to ensure the energy measures were not affected

by the recording level. The VoiceSauce application (Section 4.2) was then used

to calculate the following measures: H1−H2, H2−H4, H1−A1, H1−A2, H1−A3,

CPP, HNR05, HNR15, HNR25 and energy. Since the phonations within each

subject were all approximately the same vowel, only the uncorrected versions of

the harmonic magnitudes and spectral amplitudes were used in the analysis. Each

measure was calculated with the default frame shift size of 1 ms and averaged
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over the whole phonation.

Statistical analyses were performed with the software package SPSS (v16.0).

For the two-way analysis of variances (ANOVA) tests, fixed factors included the

speaker plus one other factor from voice quality, glottal gap and F0 type. Tests

where the null hypothesis had a probability of p < 0.001 were considered to be

statistically significant.

4.3.3 Results

4.3.3.1 Voice quality effects

Statistical analysis was performed on all of the phonations, using voice quality

(pressed, normal and breathy) as one of the fixed factors. The voice source

model parameters and acoustic measures which showed statistical significance

are listed in Table 4.3; values listed are the F value1 with its associated degrees

of freedom, η2 (measure of effect size), and the parameter/measure means and

standard deviations. Not surprisingly, OQ was shown to be lowest for the pressed

phonations and highest for the breathy phonations. This is in agreement with

existing studies ([Huf87, Fis67, SL90]) which suggested this effect. Figure 4.1

shows the mean OQ values for each subject averaged over the pressed, normal

and breathy phonations. With the exception of M1, the other subjects all had

the same trend for the OQ value: pressed < normal < breathy. An inspection

of the glottal area waveform for subject M1 (see Appendix A) shows that the

pressed, high F0 phonation has a DC-offset. This may be because the high F0

produced does not give the vocal folds enough time to return to the closed phase,

1The F value is defined as the ratio of the model mean square to the error mean square and
the partial η2 value is calculated as SSeffect/(SSeffect + SSerror), where SSeffect is the sum
of squares of the effect and SSerror is the sum of squares of the error.
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Table 4.3: Voice source model parameters and acoustic measures which were affected

by voice quality in a statistically significant way. Values shown are the F value (ratio

of the model mean square to the error mean square), η2 (measure of the effect size),

and the parameter/measure means and standard deviations (in parentheses) for the

three voice qualities.

F and η2 Mean (s.d.) of parameter/measure

Parameter F (1, 2) η2 Pressed Normal Breathy

OQ 28.568 .641 .650(.128) .804(.128) .935(.062)

α 31.576 .664 .507(.057) .486(.088) .386(.041)

Measure

CPP 27.935 .636 25.081(3.290) 23.991(2.396) 18.042(2.744)

HNR05 9.331 .368 15.414(10.559) 13.502(7.817) 3.442(6.522)

HNR15 9.633 .376 24.591(10.537) 23.435(5.762) 13.325(6.868)

HNR25 10.340 .393 27.406(10.099) 26.311(5.841) 16.401(6.380)

H1 − A2 8.871 .357 13.502(7.054) 17.266(8.593) 23.025(6.503)

H1 − A3 18.099 .531 20.499(6.158) 24.347(6.724) 29.796(6.322)

H1 − H2 16.641 .510 -0.215(6.791) 1.670(6.213) 11.188(4.583)

resulting in a larger OQ than normal for the pressed phonation.

A somewhat unexpected result was seen for the model parameter α, although

a post-hoc analysis showed that the main effect was due to the pressed/normal

vs. breathy voice qualities. The results showed that, on average, the pressed

and normal phonations were more symmetrical (equal durations for opening and

closing phases) than the breathy phonations which were skewed towards a shorter

opening phase. This is demonstrated in Figure 4.2 using the mean OQ and α

values in Table 4.3 with Sop and Scp set to 0.5. This result is surprising because
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Figure 4.1: Mean OQ values for each speaker averaged over the pressed, normal and

breathy phonations.

the duration of the opening phase has conventionally been thought to be always

longer than the duration of the closing phase, due to the effort require to separate

the vocal folds, and also because this is what has been seen in EGG and airflow

signals. Individual subject analysis showed that all subjects had the lowest α

values for the breathy phonations.

The statistical analysis on the acoustic measures showed that most of the

measures (CPP, HNR, and H1 − H2) thought to be related to breathiness were

statistically significant. However, post-hoc analysis on these measures revealed

that there were few differences between the pressed and normal phonations, with

the statistical significance coming mainly from the pressed/normal vs. breathy

phonations. For the CPP measure, the mean values were higher for the pressed

and normal phonations than for the breathy phonation. This was as predicted

in [HCE94], and could be attributed to the rising of the noise floor in the speech

spectrum for breathy phonations. Similarly, the HNR (HNR05, HNR15 and

HNR25 ) measures were much lower for the breathy phonations due to increased
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Figure 4.2: Examples of voice source shapes for the mean OQ and α values listed in

Table 4.3; Sop and Scp were both set to a value of 0.5.

noise in the spectrum. Interestingly, the H1 −H2 measure had similar means for

the pressed and normal phonations, but a significantly larger value for the breathy

phonation. This is slightly different from the trends for the OQ parameter which

had progressively increasing values from the pressed to normal to breathy voice

qualities.

On average, the spectral tilt measures H1 − A2 and H1 − A3 were smallest

for the pressed phonation and largest for the breathy phonation. These results

confirm the hypothesis in [Han97] that voice sources with more abrupt glottal

closures may lead to more high frequency components in the speech spectrum.

A similar, but indirect, result in [SV96b] found that tenser, stressed phonations

had more high frequencies than lax phonations.

Individual subject analysis for the acoustic measures found that all six sub-

jects had similar trends for the measures.
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4.3.3.2 Glottal gap effects

The results in Section 4.3.3.1 showed that for the parameter α and the voice source

related measures, there were few differences separating the pressed and normal

phonations. However, the breathy phonations were seen to have significantly

different values from either the pressed/normal phonations. A possible cause for

this effect could be due to the existence of glottal gaps for the breathy phonations.

16 out of the total 17 breathy phonations had glottal gaps, with the exception

being the breathy, low F0 phonation for subject M3.

Table 4.4 lists the model parameters and acoustic measures which were sta-

tistically significant in the ANOVA analysis, with the presence/absence of the

glottal gap as the other fixed factor, along with the subject. Given that glottal

gaps usually occurred with the breathy phonations, it was not surprising to see

the OQ parameter being associated with the glottal gap effect. Similarly, it was

shown previously that the α parameter had the lowest mean value for the breathy

phonations, hence the statistical significance with the glottal gap factor. While

it can be seen from these results that OQ is dependent on both the type of voice

quality (pressed, normal or breathy) and the existence/absence of the glottal gap,

it is not clear as to how or which factor is predominantly affecting α, or if both

factors are affecting it, similar to OQ. Analysis of the phonations which contained

a glottal gap and were not of a breathy voice quality showed that the α values

for these phonations were not necessarily the lowest for their corresponding voice

quality group. However, for all subjects, the breathy phonation had the lowest α

values when averaged across each subjects’ F0 type. From these results, it would

be reasonable to hypothesize that it is the breathy phonations which affect the

α values, but more data would be needed to confirm this.

Interestingly, parameter Sop, which did not show a statistically significant
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Figure 4.3: Examples of voice source shapes for the mean OQ, α and Sop values listed

in Table 4.4; Scp was set to a value of 0.5.

effect of voice quality, showed a statistical significant effect of the glottal gap.

The larger mean value for the presence of the glottal gap translates to a slower

initial rise during the opening phase. This is shown in Figure 4.3 using the mean

values in Table 4.4 for parameters OQ, α and Sop; Scp was set to a value of 0.5.

A possible explanation for the slower initial rise during the opening phase could

be due to the smaller distance required to reach the maximum open position of

the vocal folds. Without the glottal gap, the distance from the closed position

to the maximum open position is much greater, hence requiring a faster initial

rise during the opening phase. Another way of interpreting these results could

be that the opening phase is dictated by a constant “curve”, and the glottal gap

simply moves the starting point up this curve. This interpretation would also

result in a lower Sop value when using the full range of the curve and a high value

when starting near the middle of this curve.

With the exception of the three HNR measures, the acoustic measures which
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Table 4.4: Voice source model parameters and acoustic measures which were statis-

tically significant to the effects of the glottal gap. Values shown are the F value, η2,

and the parameter/measure means and standard deviations (in parentheses) for the

phonations with glottal gaps and without glottal gaps.

F and η2 Mean (s.d.) of parameter/measure

Parameter F (1, 1) η2 Glottal gap No glottal gap

OQ 47.480 .555 .922(.068) .694(.139)

α 38.690 .504 .413(.066) .498(.077)

Sop 15.414 .289 .550(.066) .481(.074)

Measure

CPP 24.677 .394 19.631(3.515) 24.605(3.258)

H1 − A2 27.039 .416 22.070(6.812) 14.569(7.958)

H1 − A3 44.184 .538 29.451(6.127) 21.150(6.116)

H1 − H2 29.089 .434 9.371(5.937) -0.014(6.283)
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were statistically significant to the voice quality factor were also statistically

significant to the presence/absence of the glottal gap. This is not surprising

given that the same measures appear to be predominantly affected by the breathy

voice quality which contains most of the phonations with glottal gaps. The mean

values for the measures HNR05, HNR15 and HNR25 were also lower, inferring

more noise, for the presence of the glottal gap, but these were not statistically

significant. This suggests that noise may be more prevalent in breathy phonations

as opposed to phonations with incomplete glottal closures, which may or may not

be breathy. A related study ([KK90]) found that, during perceptual experiments,

listeners were more likely to rate a phonation as breathy if an increase in H1−H2

was accompanied by noise; increases in H1 − H2 alone were sometimes rated as

having a nasalized voice quality. Similarly, in [Kha09], it was found that H∗
1 −H∗

2

only worked for some speakers in separating breathy vs. modal vowels in Gujariti.

In [Han97], it was suggested that speakers with high H∗
1 − A1 and H∗

1 −
A∗

3 values may have a posterior opening in the vocal folds. This hypothesis is

supported here by the related measure, H1 − A3, which has a high mean value

for the glottal gap case. Although the mean values for H1 − A1 also showed the

same trend, the effect was not statistically significant.

4.3.3.3 F0 type effects

No voice source model parameters or acoustic measures were affected by the three

F0 types (low, normal and high) in a statistically significant manner. In terms of

model parameters, this is not so surprising as shown by the recorded phonations,

the three different voice qualities could be produced at three different levels of

F0 for most of the subjects. However, previous studies ([ISE06, ISA07]) utilizing

more natural speech, have shown that there are correlations between F0 and
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certain acoustic measures such as H∗
1 − H∗

2 and energy. In this work, the data

used were more of a static nature, and this may have reduced the effects of F0

on these measures.

4.3.3.4 Correlations between model parameters and acoustic mea-

sures

Table 4.5 lists the correlations (r) between voice source model parameters (OQ, α,

Sop and Scp) and the acoustic measures (CPP, HNR, H1−A1, H1−A2, H1−A3 and

H1−H2). Measures H2−H4 and energy did not show any strong correlations with

model parameters. Parameter Scp also did not show any meaningful correlation

but is listed for comparison with Sop.

It can be seen that the parameter OQ is moderately correlated with the

parameters α and Sop, and also with the measures CPP, H1 − A1, H1 − A2,

H1 −A3 and H1 −H2. The correlations with α and Sop were not surprising given

that α appeared to be affected by voice quality and Sop by the presence/absence

of the glottal gap, both effects which were correlated with OQ. The negative

correlation with CPP is most likely attributable to the breathy voice quality;

since breathy phonations were seen to induce larger OQ values and also more

spectral noise, hence resulting in a smaller CPP value. Correlations with the

spectral tilt measures H1−A1, H1−A2 and H1−A3 could be explained using the

reasoning from [Han97]; that is, when the glottal closures become less abrupt,

as in the case when OQ increases, the high frequency components are generally

reduced. The moderate correlation with H1 − H2 was as predicted by [HHP95],

although the correlation here was not quite as strong as that study (r = 0.6563

vs. r = 0.6928). However, as shown by the mean values in Table 4.3, the mean

H1 − H2 values did not increase linearly for the three types of voice qualities as
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Table 4.5: Correlations between voice source model parameters and acoustic mea-

sures. Values are the correlation coefficients (r); correlations with r > 0.4 are in bold

and were all statistically significant. Measures H2 − H4 and Energy did not show any

meaningful correlations with any voice source parameters.

Parameters/Measures Voice source model parameters

OQ α Sop Scp

α -0.5546 – – –

Sop 0.5034 -0.3306 – –

CPP -0.5445 0.5256 -0.1617 -0.1240

HNR05 -0.3187 0.4112 -0.0985 -0.1339

HNR15 -0.3536 0.4151 -0.1814 -0.0685

HNR25 -0.3370 0.4606 -0.1521 -0.0798

H1 − A1 0.4998 -0.3053 0.2452 -0.0734

H1 − A2 0.4454 -0.3170 0.0808 0.0854

H1 − A3 0.5520 -0.2250 0.0957 0.0522

H1 − H2 0.6563 -0.4730 0.2641 0.1562
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occurred with the parameter OQ. Furthermore, H1 − H2 also showed a slight

correlation with the asymmetry coefficient, α. This is similar to the findings

in [HdD01], which used the LF model to theoretically show that H∗
1 − H∗

2 was

dependent on both OQ and the asymmetry coefficient.

Apart from the measure H1 − H2, α was also correlated with CPP, and the

three HNR measures. CPP was also moderately correlated with the parameter

OQ which was affected by the voice quality. Interestingly, the HNR measures

were more strongly correlated with α than OQ, although the correlations are

moderately weak for both parameters. This is not surprising since it was shown

previously that both α and the HNR measures were thought to be predominantly

affected by the breathy voice quality.

The lack of any meaningful correlations with the parameter Scp is surprising

given that the parameter Sop is moderately correlated with OQ; the correlation

coefficient between OQ and Scp is r = 0.1825 compared with r = 0.5034 for Sop.

Since the tension of the laryngeal muscles is assumed to be constant during a

cycle of phonation, this result requires further exploration.

4.3.4 Summary

In this work, direct measurements of the glottal area waveforms were used to

examine the voice source model parameters and acoustic measures in relation

to the effects of voice quality, glottal gaps and F0. Using ANOVA tests, it was

found that the model parameter OQ and the spectral tilt measures H1 − A2

and H1 − A3 were affected by both voice quality and glottal gaps, while the

parameter α was predominantly affected by voice quality, especially of the breathy

type. This was also the case with many of the acoustic measures, such as CPP

and the three HNR measures, indicating the presence of more spectral noise
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for breathy phonations. Correlation analysis showed that the measure H1 − H2

was correlated with both the parameters OQ and α, which agrees with existing

theoretical studies. However, the correlation between OQ and Sop and the lack

of correlation between OQ and Scp is puzzling and requires further research to

unravel their relationship.

4.4 Application II: Automatic gender classification

Gender-based differences in human speech are due in part to physiological differ-

ences such as vocal fold thickness or vocal tract length, and differences in speaking

style. Physiological properties of the glottis and the vocal tract change with age

and gender. Since these changes are reflected in the speech signal, acoustic mea-

sures related to those properties can be helpful for age and gender classification.

Assuming the linear source-filter model of speech production [Fan70], the contri-

bution of acoustic measures to such classification can then be attributed to the

voice source or the vocal tract. To our knowledge, with the exception of funda-

mental frequency (F0), there has been no study that has examined the role of

voice source related measures on age and/or gender classification.

It is well known that F0 values for male talkers drop during adolescence due to

a lengthening and thickening of their vocal folds. F0 for adult males is typically

around 120 Hz, while F0 for adult females is around 200 Hz [PB52], similar to

children.

It is also well known that, due to vocal tract length differences, adult males

exhibit lower formant frequencies than adult females [PB52]. Interestingly, for

preadolescent children, studies also found lower formant frequencies for boys com-

pared to girls of ages 5-6 [WB71], 7-8 years [Ben80], and ages 5, 7, 9, and 11
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years for Australian English [BP95]. These findings imply that, overall, boys

have larger vocal tracts than girls. In [POA01], statistical analysis of children

speech confirmed that formant frequencies (F1, F2, F3), and not F0, differentiate

gender for children as young as 4 years of age, while formant frequencies plus F0

differentiate gender after 12 years of age. These findings lead to the conclusion

that for preadolescent children, vocal tract measures play a bigger role for gen-

der classification than the voice source measure F0. For adult speech, automatic

gender classification has been presented in [WC91], which used linear predictive

coding (LPC)-derived measures that represent the vocal tract.

In [LPN99], changes in magnitude and variability of, among other measures,

F0, formant frequencies, and spectral envelope are presented as a function of age

for talkers from 5 to 50 years old. For F0, the study showed a drop between ages

12 and 15 for males and a drop of F0 variation for all talkers between ages 5 and

15. Formant frequencies (F1, F2, F3) decreased between ages 10 and 15, where

formant frequencies of male talkers decreased faster and reached much lower

absolute values than those of female talkers. The study showed that children

younger than age 10 displayed greater spectral variability than adults.

In [ISA07], age, sex, and vowel dependencies, were analyzed for talkers be-

tween the ages of 8 and 39 for the following three voice source related measures:

F0; H∗
1 −H∗

2 , and H∗
1 −A∗

3. For male talkers, the results showed a drop of about

5 dB in H∗
1 − H∗

2 around age 15 and a continuous decrease of H∗
1 − A∗

3 between

ages 8 and 39 by about 10 dB. For female talkers, the value of H∗
1 −H∗

2 remained

relatively unchanged between ages 8 and 39, whereas for H∗
1 −A∗

3 a slight decrease

by about 4 dB was shown. These developmental changes resulted in higher values

of F0, H∗
1 − H∗

2 , and H∗
1 − A∗

3 for adult female talkers compared to adult male

talkers [HC99].
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In this section, acoustic measures from both the voice source and the vocal

tract were used for automatic gender classification of 8 to 39 year old talkers. The

vocal tract measures consist of formant frequencies and formant bandwidths, and

the voice source measures used were F0, H∗
1 − H∗

2 , and H∗
1 − A∗

3. Training and

testing was done using support vector machines (SVMs). The results were ana-

lyzed to see if voice source measures can improve automatic gender classification.

Finally, the SVM classification results were compared with human perception

classification tests, and also with classification results using conventional Mel-

frequency cepstral coefficient (MFCC) features in combination with Gaussian

mixture models (GMMs).

4.4.1 Speech data

Speech recordings from five age groups, ages 8–9, 10–11, 12–13, 14–15 and 16–39

were taken from the CID database [MLU96]. Each recording was of the form “I

say uh, bVt again”, where the target vowel ‘V’ was /ih/, /eh/, /ae/, /uw/ or

/iy/. The word ‘bead’ was used to elicit the vowel /iy/ in this database. These

utterances were spoken at the habitual speaking level and most talkers repeated

the phrases twice. For the analysis here, only the manually segmented target

vowels were used. The distribution of talkers (males/females) and number of

utterances per age group is listed in Table 4.6. The total number of male/female

talkers was 205/160 and the total number of utterances was 3880.

4.4.2 Methods

The acoustic measures used for gender classification were the first three formant

frequencies (F1, F2, and F3), the first two formant bandwidths (B1 and B2), and

the measures related to the voice source F0, H∗
1 − H∗

2 , and H∗
1 − A∗

3. The mea-
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Table 4.6: Distribution of gender and utterances for each age group.

Age group males/females No. of utterances

8-9 48/36 810

10-11 48/33 807

12-13 38/34 708

14-15 22/21 413

16-39 49/36 1142

sures were processed using VoiceSauce (Section 4.2) with the following settings:

formant frequencies and bandwidth values were estimated with Snack (analysis

window of 25 ms, frame shift of 1 ms and pre-emphasis factor of 0.96), and F0

was estimated using the STRAIGHT algorithm. For each of the voice source

measures, a first order Legendre polynomial was fitted to the raw values to ob-

tain a measure of the mean and the slope (denoted by �) across the duration of

the vowel.

Classification was done using an SVM classifier with a Radial Basis Function

kernel. In this study, the LIBSVM toolkit [CL01] was used to train and test

on vectors containing different combinations of acoustic measures extracted from

the five target vowels. For each classification experiment, 70% of the utterances,

selected randomly, were used for training; the remaining utterances were used

for testing. Five experiments were performed for each combination of acoustic

measures and the average accuracy recorded.

For perception tests, four male subjects between ages 26 and 39 participated.

They were each presented with 100 utterances of the target words and had to

decide between male or female voice. The target words were manually segmented

from the carrier phrase and were played back in random order using headphones.
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The distribution of male and female utterances per age group are listed in Ta-

ble 4.7. The same perception tests were also performed using just the segmented

vowel part of the target word.

To compare the SVM results with more traditional methods, the first 12

MFCCs were extracted from the utterances and combined with the mean F0 for

each of the utterances to form a 13-dimension feature vector. Training was done

with 2 GMMs each with 6 mixtures.

Table 4.7: Distribution of utterances used in perception experiments.

Age group No. of utterances

male/female

8-9 7/7

10-11 8/8

12-13 8/8

14-15 12/10

16-39 15/17

4.4.3 Results and discussion

For this section, the set of acoustic measures containing formant information (F1,

F2, F3, B1, and B2) will be denoted by FB.

4.4.3.1 Results using F0 and formants

As a first step, we analyzed the contribution to gender classification accuracy of

only F0, only FB, and F0 plus FB (labeled by M0). These measures are the most

widely used in gender and age classification. Figure 4.4 shows the classification

accuracy for each age group using those measures. For ages 8 to 11 it can be
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seen that formant information only (FB) performed slightly better than F0. This

is consistent with [POA01]. Gender classification accuracy for ages 8 to 13 was

always below 65%, but between age groups 12–13 and 14–15, it increased to 85%

for F0 and to 68% for FB; these results can be attributed to the large drop of F0

for males around ages 12 to 15 (about 105 Hz on average) [ISA07, LPN99] and

to a decrease of formant frequencies for males relative to females [LPN99]. Since

M02 overall yielded the best results, it was chosen as the baseline measure set for

the comparison of the performance of voice source measures.
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Figure 4.4: Gender classification accuracy for each age group using just F0, just FB,

and F0 plus FB (M0).

4.4.3.2 Results adding voice source measures

Figure 4.5 compares the changes in gender classification accuracies resulting from

the addition of the various voice source measure sets (M1–M3) as listed in Ta-

2We also tested adding �F0 as a feature, but the classification accuracies were slightly lower
when this measure was added.
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Table 4.8: Measure sets (M0–M3) used in the gender classification tests. M0, in

bold, is used as the baseline measure set.

Set Acoustic Measures

F0 FB H∗
1 − H∗

2 H∗
1 − A∗

3 �F0 �H∗
1 − H∗

2

M0 � �

M1 � � �

M2 � � � �

M3 � � � � � �

ble 4.8. The baseline measure set (M0) is shown as a solid line. Table 4.9 shows

the values corresponding to this figure as well as results from MFCC/GMM classi-

fication tests. It can be seen that adding voice source measures plays a significant

role only for age groups 10–11 and 12–13, where the absolute accuracy was im-

proved by up to 9% using measure set M3. For age group 8–9, the accuracies

were below 60% and the SVM seemed unable to model the classes for males and

females satisfyingly. Although it was shown in [ISA07] that the source measures

H∗
1 − H∗

2 and H∗
1 − A∗

3 are dependent on age and gender, the changes in classifi-

cation accuracy for age groups 14–15 and 16–39 when using M1 or M2 were not

significant. This could be attributed to the already large classification accuracy

of the baseline (M0). Interestingly, while the classification accuracies for the voice

source measure sets were similar to the MFCC/GMM results for age groups 8–9,

12–13 and 16–39, the voice source measure set performance for M2 is about 9%

and 5% higher for age groups 10–11 and 14–15, respectively.

A closer look at the classification accuracy results for age group 12–13 is

shown in Table 4.10, which shows the percentage correct classification of males

and females. Compared to M0, the addition of the voice source measures assists in
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Figure 4.5: Gender classification accuracy for each age group using the measures sets

M1, M2 and M3. M0 represents the baseline performance results. The corresponding

values are listed in Table 4.9.

increasing the classification accuracy by about 7% for males and 9% for females

when using M3. However, since the M2 measures are easier to calculate than

those of M3, and M2 showed a classification accuracy improvement for all ages

between 10 and 39, it is recommended to use M2 for gender classification. M2

will be used throughout the remainder of this results section.

4.4.3.3 Comparison with perception results

Table 4.11 compares automatic classification results (denoted by AUT) with hu-

man perception results from this study (denoted by PER1) and from perception

experiments in [POA01] (denoted by PER2). Note in [POA01], the target words

were in a different context (hVd instead of bVt). These perception experiments

were done using the target words. All values are gender recognition accuracies in

percent. Dashes in the table represent unavailable data. AUT results were from
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Table 4.9: Gender classification accuracy for the different measurement sets (M0-M3)

and age groups. MFCC feature classification results are shown for comparison.

Age Baseline set Voice source measure sets MFCC

group M0 M1 M2 M3 features

8-9 59.75% 58.76% 58.18% 59.83% 59.01%

10-11 64.23% 64.07% 67.30% 65.39% 58.34%

12-13 59.91% 63.51% 65.50% 68.63% 68.91%

14-15 84.88% 86.50% 86.18% 82.93% 81.63%

16-39 95.03% 95.26% 95.15% 94.85% 95.79%

Table 4.10: Gender classification accuracy for age group 12-13, distinguishing between

males and females.

Set M F Total

M0 59.28% 60.60% 59.91%

M1 63.24% 63.80% 63.51%

M2 63.06% 68.20% 65.50%

M3 66.67% 70.00% 68.63%
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using measure set M2. The SVM classifier performs comparably with the human

subjects for the talkers aged 14 and above. For talkers aged below 14, the results

are somewhat mixed and the accuracies reduce with decreasing age; however this

trend also exists with the human classifiers. In effect, in the “total” section of

the table, the AUT results agree well with the perception results.

Since the SVM was only given the target vowels, and the listeners were able

to listen to the whole target word, it seemed only fair to see how listeners would

perform when given only short vowel segments. Interestingly, for talkers of age

15 and above, the results were similar to gender classification using target word

(about 90% recognition accuracy) and our experimental subjects were mostly

using F0 to do the classification. For talkers of age 14 and below however, our

experimental subjects all agreed that their decisions on target vowels were mostly

based on chance; the removal of the contextual information reduced the ability to

distinguish between genders. As stated in [POA01]: “...prosodic features that are

overlayed (suprasegmentals) upon sound segments in words, phrases, or sentences

and include intonation, stress, duration, and juncture maybe important in gender

identification.”

4.4.4 Summary

In this work, the role of voice source measures in automatic gender recognition was

examined and compared with the results of perceptual experiments performed on

the same database. Vocal tract and voice source measures were extracted from a

large database of 3880 utterances spoken by 205 males and 160 females. Formant

frequencies and formant bandwidths were used as vocal tract measures, and F0,

H∗
1−H∗

2 (related to open quotient and asymmetry), and H∗
1−A∗

3 (i.e. spectral tilt)

were used as voice source measures. The slopes (derivatives) were also calculated
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Table 4.11: SVM gender classification accuracy, in percent, using measure set M2

compared with perception results from this paper (PER1) and from Perry et al.

[POA01](PER2). Dashes indicate unavailable values. The perception experiments

used the target words.

Age 8 9 10 11 12 13 14 15 16

Males

AUT - - 67 83 94

PER1 39 72 91 100 100

PER2 74 - - - 82 - - - 99.7

Females

AUT - - 68 90 97

PER1 68 75 31 70 97

PER2 56 - - - 56 - - - 95

Total

AUT 58 67 66 87 95

PER1 54 73 61 86 98

PER2 65 - - - 69 - - - 97

for the voice source measures. Automatic gender classification using SVMs was

performed on five age groups with different sets of acoustic measures.

Using a baseline measure set consisting of F0, the first three formants (F1,

F2, F3) and the first two bandwidths (B1, B2), it was found that adding the two

voice source measures H∗
1 − H∗

2 and H∗
1 − A∗

3 yielded the most consistent classi-

fication accuracy improvement over the baseline. For age group 8–9, the results

were all below 60%, slightly higher than chance, however for ages greater than 9,

using these two measures increased the classification accuracy, although the im-
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provements decreased for older talkers as the role of F0 became more dominant.

The measure sets which included the slopes �F0 and �H∗
1 − H∗

2 did not pro-

duce consistent results and in some age groups actually reduced the classification

accuracy.

Perception experiments using the target words showed similar results com-

pared to the results of the SVM classifier, which used only the target vowel. Per-

ception experiments using only the target vowel showed that for children aged 14

and below, classification accuracy was close to chance, suggesting that outside

the vowel segment there exist suprasegmental cues, which could aid in automatic

gender classification.

4.5 Application III: Prosody analysis

“Prosody” refers to properties of speech such as rhythm, timing, intonation, and

stress. In American English, an important part of prosody relates to the promi-

nence of a word within a phrase. This is usually marked by a pitch accent. Pitch

accents, as a prosodic feature, allows a speaker to place contrastive stress on

words within a phrase to indicate prominence or significance. Similarly, lexical

stress allows a syllable to be more prominent than others within a word. Bound-

ary tones signify groupings and allow a speaker to group words into intonational

phrases and the choice of boundary tone can distinguish statements (Low or

L–L%) from questions (High or H–H%). Accurate detection of pitch accents,

stress, and boundary tones would benefit applications such as automatic speech

recognition, speaker identification, and emotion classification.

With a few exceptions, previous studies of prosodic features have typically

focused on the fundamental frequency (F0), intensity, and duration. In [CHC05],

91



a large number of voice source related measures was analyzed using the Boston

University Radio Corpus and it was found that there were no spectral harmonic

measurements which could distinguish between accented and non-accented sylla-

bles. Similarly, [Oko06] found that correlates of pitch accents were: differences

in peak fundamental frequency (F0), peak intensity, and amplitude of voicing.

In [SV96b], which studied Dutch speakers, and [Fan97], which studied Swedish

sentences, it was found that stressed syllables are generally tenser, have more

high frequency energy and lower open quotient of the glottal source. Since pitch-

accented syllables are also stressed, it would be expected that these attributes

might also apply to pitch-accented syllables. In [ISE06], it was found that these

results were statistically significant if a distinction was made between low and

high pitch accents. However, in that study, stressed syllables were compared with

all other unstressed syllables in the corpus. When the effects of boundary-related

tones were taken into account in later analysis, it was found that the results were

only significant if the speakers were separated by gender.

In this study, using a prosodically-labeled corpus, which is carefully con-

structed to have the same words in different prosodic contexts, we examine how

acoustic measures of lexical stress are affected by the presence of pitch accent,

gender of the talker, and boundary tones. Acoustic measures were estimated and

contours were fitted to these measures based on a weighted least squares error

criterion. Analysis of variance (ANOVA) was performed to assess the statistical

significance of the results.

4.5.1 Speech corpus

The corpus consists of data from [Eps02] along with new recordings of the same

sentences so that the total number of speakers is 10: 5 males and 5 females. For
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each speaker, 10 repetitions were recorded for each of the following sentences,

where the bold word is accented:

• Dagada gave Bobby doodads.

• Dagada gave Bobby doodads.

• Dagada gave Bobby doodads?

• Dagada gave Bobby doodads?

The declarative and interrogative sentences induce the subjects to place contrast-

ing boundary tones on the same word for the different sentence types.

Subjects were native speakers of Western American English between 21–35

years old. Signals were recorded in a sound-attenuated booth with a 1.0” Brüel &

Kjær condenser microphone placed 5 cm from the subjects’ lips. The signals were

sampled at 20 kHz and downsampled to 10 kHz. The first and last repetitions of

each sentence were discarded for the final analysis.

Two graduate students manually segmented the sentences and used the ToBI

[SBP92] transcription standard to label the corpus. For this study, the high and

low pitch accents, denoted by H∗ and L∗, respectively, and the high and low

boundary-related tones, denoted by H–H% and L–L%, respectively, on the words

“Dagada” and “doodads” were analyzed. Syllables with primary lexical stress

as on “ga” in “Dagada” and on “doo” in “doodads” are underlined. For the

analysis of “Dagada”, 32 files from a male speaker who pronounced the word

as “Dagada” were discarded, while for the “doodads” 10 files were discarded as

the F0 tracker did not provide reliable data. The final distribution of prosodic

labels was 69/97/122 (L∗/H∗/noPA) occurrences for “Dagada” and 81/82/75/72

(L∗H–H%/H∗L–L%/L–L%/H–H%) occurrences for “doodads”. Note that noPA
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indicates no pitch accent and that the labels for “doo” can be L∗/H∗ or none,

while for “dads” they are either L–L% or H–H%.

4.5.2 Voice quality related measures

Three measures related to the voice source and voice quality were estimated:

F0, H∗
1 − H∗

2 , and H∗
1 − A∗

3. These measures were estimated over the entire

duration of each sentence using the VoiceSauce application (Section 4.2) with

the following settings: F0 was estimated using the STRAIGHT algorithm and

formant frequencies were estimated with the Snack sound toolkit (window length

of 25 ms, frame shift of 1 ms and pre-emphasis factor of 0.96).

4.5.3 Contour Fitting and Analysis

For each word, contours were fitted to the three voice source measures according

to a weighted least squares error criterion based on the signal energy, E(n). When

the energy falls below a certain threshold, as would occur in-between syllables of

a word, the voice source measures become less reliable, and hence, less weighting

is applied to the error function. The error weighting function, W (n), was deter-

mined by E(n), with the threshold, Eth, at a quarter of the mean energy of the

word. After E(n) drops below the threshold, the weighting function decreases

exponentially3, as shown in Eq. 4.2.

W (n) =

⎧⎨
⎩ 1, E(n) ≥ Eth

e−(Eth−E(n))/Eth , E(n) < Eth

(4.2)

The use of the error weighting function ensured that only the most reliable F0

values were used for the contour fitting. Although raw F0 values, in reality, are

3Other functions were tried, such as linear and piece-wise linear functions, but the exponen-
tial function provided the best performance due to its smooth roll-off.
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not always continuous during a voiced stop such as the /d/ and /g/ in our target

syllables (i.e., microprosody), the closure duration of a voiced stop is usually

small compared to the vowel duration, allowing the contour mapping to effectively

smooth over these regions.

Similar to what was done in [KGC05], weighted Legendre polynomials were

used for the contour approximations due to their orthogonality property. Each

Legendre polynomial, Pi(n) is associated with a coefficient, ai, which enables a

data vector, y(n), to be approximated as y(n) ≈ ∑N
i=0 aiPi(n), where N is the

desired polynomial order. The coefficients ai provide a simple way to approximate

a data vector. For this study, we set N = 3 since the longest word in the test

corpus consists of three syllables. Eq. 4.3 shows the error criterion, Ea, used in

the optimization of the ai’s.

Ea =
∑

n

(
y(n) −

3∑
i=0

aiPi(n)
)2

· W (n) (4.3)

The orthogonal property of Legendre polynomials enables each coefficient to be

optimized separately. For simplicity, we used iterations of the intermediate value

theorem to find the optimal ai’s. Iterations were stopped when the ai values did

not change within five decimal places. The four coefficients (a0, a1, a2 and a3)

used in this study represent, respectively, the Legendre polynomials P0(x) = 1

(related to the mean), P1(x) = x (related to linear slope), P2(x) = 1
2
(3x2 − 1)

(related to quadratic convexity/concavity), and P3(x) = 1
2
(5x3 − 3x) (related to

cubic behavior).

For each word, contours were fitted to the three voice source measures (F0,

H∗
1 −H∗

2 , and H∗
1 −A∗

3) and the results were manually checked for all utterances;

29 F0 contours at the beginning and the end of the utterances had to be manually

corrected. For each prosodic event (H∗, L∗, H∗L–L%, L∗H–H%, H–H% and L–

L%), the means of the coefficients were calculated, enabling a direct comparison
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between the effects of each prosodic event. Two-way ANOVA tests, from the

software package SPSS (v16.0) were then performed on the coefficients, with

the fixed factors being speaker and prosodic feature. The p (probability of null

hypothesis) values, F (ratio of the model mean square to the error mean square)

values, and partial η2 (measure of effect size) values are reported for some cases.

4.5.4 Results

4.5.4.1 Pitch accent

For the word “Dagada”, as expected, most talkers showed higher/lower F0 values

for H∗/L∗ pitch accented syllables compared to the unaccented (noPA) case.

Figure 4.6 shows F0 contours averaged over data from the male talkers for the

unaccented and accented pronunciations of the word. Interestingly, for H∗, most

talkers showed a minimum value close to the end of the first syllable (“Da”)

and a maximum value at the beginning of the last syllable (“da”), where the F0

maximum was about 15 Hz higher for H∗ compared to noPA. That is, the F0

maximum did not occur during the stressed “ga” syllable but was delayed to the

beginning of the next syllable. The F0 drop before the actual maximum indicates

that these cases should perhaps be labeled with L+H∗, instead of H∗, although

this distinction was sometimes difficult to make perceptually. Here, we consider

both L+H∗ and H∗ to be of the same category. For the L∗ case, both genders

showed an F0 minimum at the middle of the stressed “ga” syllable, where it was

about 15 Hz lower for L∗ compared to noPA. For 7 out of 9 talkers the delay

between F0 maximum for H∗ and F0 minimum for L∗ was about 100 ms. For one

female talker, there was no delay, and for another female talker, the delay was

200 ms. The delay may be due to the dip in F0 before the H∗, which provides

more contrast for the following high pitch accent. ANOVA results on the effects
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Figure 4.6: Average stylized F0 contours “Dagada” (males).

of noPA, H∗, and L∗ were significant for all speakers and all four polynomial

coefficients.

Both genders also exhibited similar F0 contours for the boundary word “doo-

dads”. Figure 4.7 shows F0 contours for female talkers for each of the four

prosodic events (L–L%, H–H%, H∗L–L%, and L∗H–H%). With few exceptions,

the F0 contour for H–H% increased monotonically (a1 > 0), whereas for L–L%

it decreased (a1 < 0). For all talkers the contour for L–L% always lay below the

contour for H–H% and the contours for accented words (L∗H–H% and H∗L–L%)

lay mostly between the contours for L–L% and H–H%. The delayed F0 peak

for the H∗ case which was observed for “Dagada” was not as pronounced for

“doodads”, with only a slight delay observed for some talkers. This could be

due to the influence of the boundary tone and/or due to the stress structure of

the word. Interestingly, most speakers showed a slightly lower/higher F0 before

a high/low tone, respectively. This has also been observed in Mandarin [Xu97].

ANOVA analysis on the prosodic events showed that all four coefficients were

statistically significant for both male and female speakers. As expected, both

words show female F0 contours with larger values and range than males (M/F:
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Figure 4.7: Average stylized F0 contours for “doodads” (females).

110-155 Hz/190-260 Hz).

The duration of the word “Dagada” in accented cases was always longer com-

pared to the unaccented cases and was confirmed with ANOVA analysis (p/F/η2

= 0.00/139.7/0.52), which tested the significance of the durational change in “ga”

with accentedness as a factor. The same trend was also found for “doodads”, but

with a smaller effect size (ANOVA: p/F/η2 = 0.00/30.8/0.09). A similar result

was reported in [TW99].

Interestingly, the acoustic measures H∗
1−H∗

2 and H∗
1−A∗

3 were not found to be

distinctive for pitch accent. On average, H∗
1−H∗

2 exhibited the same convex shape

regardless of the pitch accent type and H∗
1 −A∗

3 showed some gender dependency.

This may have been due to the influences of the lexical stress on the target word.

4.5.4.2 Lexical Stress

In “Dagada”, H∗
1 −H∗

2 values seem to correlate well with lexical stress regardless

of pitch accent. All talkers showed similar convex (a2 > 0) contour shapes with a

minimum during the stressed syllable “ga”. Figure 4.8 shows these contours for
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Figure 4.8: Average stylized H∗
1 − H∗

2 contours for “Dagada” (males).

male talkers for each of the three prosodic events (noPA, H∗, L∗). For all talkers

and independent of accentedness, H∗
1−H∗

2 was larger at the onset and the offset of

the word than on the middle, stressed syllable “ga”, possibly indicating a smaller

open quotient and tenser voice quality for the stressed syllables. An ANOVA test

on the raw H∗
1 − H∗

2 mean values against the fixed factors speaker and syllable

position within the word was significant with p/F/η2 = 0.00/68.17/0.15. On

average, the stressed syllable “ga” was about 2.5 dB and 4 dB lower than the

surrounding syllables for males and females, respectively. As expected, “Dagada”

H∗
1 −H∗

2 contours showed higher mean values (M/F: 2.5 dB/4.9 dB) and a larger

range (M/F: 0.5-5.5 dB/2-9 dB) for females when compared to male speakers

[HC99].

As for “doodads”, the results for H∗
1 − H∗

2 contours seem to be speaker and

gender dependent. On average, H∗
1 − H∗

2 contours for L–L% lay above those

of H–H% in female speech but the opposite was true for male speech. Contour

minima and maxima could be found anywhere within the word and it was difficult

to associate their locations with stress. This lack of consistency could be due to

boundary tone effects.
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Figure 4.9: Stylized H∗
1 −A∗

3 contours for “Dagada” for a male talker showing syllable

boundaries for an instance of each prosodic case.

The H∗
1 −A∗

3 contours appear to be gender dependent. For “Dagada”, the av-

erage contours for both genders exhibited a parabolic shape. With the exception

of one talker, male speech showed convex curves (a2 > 0) for all three prosodic

cases. For 3 out of the 5 female talkers, the opposite (a2 < 0) was true for the

accented cases. For almost all talkers the minima/maxima values occurred dur-

ing the stressed “ga” syllable with male speakers showing a minimum for lexical

stress regardless of pitch accent. Figure 4.9 shows these contours for one male

subject. The figure also shows segment boundaries for the accented and unac-

cented cases. This indicates a more abrupt closure of the vocal folds on stressed

syllables and agrees with [Oko06], [SV96b], [Fan97], and [ISE06]. As indicated

earlier, for some female talkers, unaccented cases also had minima in “ga” but

maximum values were observed when the stressed syllable was accented.

More consistency was found for the H∗
1 −A∗

3 contours for “doodads” which, on

average, had concave parabolic shapes. With the exception of two female talkers,

the contours showed a low value of H∗
1−A∗

3 which increased to a maximum around
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mid-word and then decreased at the end of the word (end of the utterance).

This result again suggests that stressed syllables have lower spectral tilt (more

high frequency energy) and agrees with previous work. Compared to declarative

sentences (L–L% and H∗L–L%), interrogative sentences (H–H% and L∗H–H%)

had, on average, a lower H∗
1 − A∗

3 contour on the phrase-final syllable “doo”; a

similar observation was made in [ISE06].

4.5.5 Summary

Not surprisingly, pitch accents were clearly marked by differences in F0 contours.

For “Dagada”, averaged contours revealed that for both genders, the L∗ event

caused the F0 minima to occur at the middle of the accented syllable, while for

the H∗ case, F0 maxima appear towards the end of the accented syllable. This

delayed peak, which was observed for almost all speakers for “Dagada” but not

for “doodads”, has implications for analyses which use mid-syllable values. For

all speakers, the syllable and hence, word duration was longer for the accented

cases than for non-accented cases.

For “Dagada”, lexical stress was clearly marked by the convex shape of the

H∗
1 − H∗

2 contours which indicate a tenser voice (lower open quotient) on the

stressed syllable; this measure seemed to be independent of pitch accent. How-

ever, this trend was not found for “doodads” possibly due to the influence of

boundary tones. The spectral tilt measure (H∗
1 − A∗

3) was seen to be gender de-

pendent for “Dagada”, with the contour decreasing for the stressed syllable for

male speech, while for female speech, this was true only for the unaccented case.

For “doodads”, the boundary-related tone, especially H–H%, generally caused

the H∗
1 − A∗

3 contours to decrease towards the end of the word, denoting lower

spectral tilt or an increase in high-frequency energy.
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These results suggest that acoustic cues of lexical stress can be affected by

the presence of a pitch accent, boundary tone, and in some cases, gender of the

talker.

4.6 Summary and discussion

In this chapter, a new application, VoiceSauce, was introduced which simplified

the process of calculating voice source related measures. This application was

then used in three different scenarios: voice quality analysis, automatic gender

classification and prosody analysis.

In voice quality analysis, the voice source parameters, as represented by the

model-fitted glottal area waveforms, along with the voice source related measures

were analyzed for correlations with the type of voice quality, the presence/absence

of glottal gaps and the F0 type. It was found that, on average, the parameter OQ

and the spectral tilt measures, H1 −A2 and H1 −A3 were affected by both voice

quality and incomplete glottal closures. The asymmetry parameter α, and the

measures CPP, HNR05, HNR15, and HNR25 were shown to be mainly affected

by the voice quality, especially of the breathy type. This suggests the possibility

of a link between α and the way noise is generated in breathy voices.

Automatic gender classification of speakers of varying age groups was found

to improve with the addition of the voice source related measures H∗
1 − H∗

2 and

H∗
1 − A∗

3. Since the F0 and formant features dominate for adult speakers, the

improvements were mainly seen for the age groups 10–11 and 12–13 year olds.

Results were comparable with human listeners using the same data.

In the analysis of prosody, high pitch accented syllables were found to be

marked differently by the F0 contour than low pitch accented syllables. In high
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pitch accents, the F0 peaks were often found near the end of the accented sylla-

ble whereas low pitch accents usually had F0 troughs around the middle of the

accented syllable; this issue is analyzed in greater detail in Chapter 5. Lexical

stress was found to be indicated by decreases in H∗
1 −H∗

2 which suggests a tenser

voice on the stressed syllable. H∗
1 −A∗

3 was seen to be gender dependent, but for

boundary related tones, the measure typically decreased towards the end of the

word, indicating an increase in high-frequency energy.

These three applications showed the various uses of voice source related mea-

sures, which can be obtained with more ease than actual voice source parameters.

However, although the work in this chapter has shed a little more light on the

subject, relating these measures back to the voice source parameters still requires

more research. The gender classification experiments show there are definite dif-

ference between young male and female speakers, and with more direct data,

these differences could eventually be quantified. The prosody analysis revealed

an interesting contextual effect and perhaps serves as a caution that the parts of

interest in a target syllable may not necessarily be in the middle of that syllable.
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CHAPTER 5

Acoustic Correlates of High and Low Nuclear

Pitch Accents in American English

In Section 4.5, it was found that the F0 maxima for high pitch-accented syllables

were occurring, not at the middle of the accented syllable as expected, but towards

the end of the syllable. In this chapter, a carefully designed speech corpus was

recorded and analyzed in detail to unravel the reasons behind the peak-shifting.

Apart from F0, which is used to calculate most of the acoustic measures listed

in Table 4.1, the duration and energy of each word were also examined. Results

showed that the three measures could be affected by the occurrence of multiple

prosodic events on a target word. This effect has been loosely named as tonal-

crowding in previous literature and its effects are further clarified in this chapter.

5.1 Prosody and pitch accents

Prosody refers to the properties of speech such as rhythm, timing, intonation

and stress1. In American English, as in many other languages, an essential role

of linguistic prosody is to signal phrase-level prominence and phrasing, using

tonal targets and other cues, such as duration (see [ST96] for a review). In the

1Docherty (1990) defines it in the following way: “Prosody or the melody of speech is the
process used to alter the meaning (linguistic prosody) or emotional force (affective prosody) of
a sentence. The components of prosody are rhythm, pitch, tone and stress and they are articu-
lated by modulation of the acoustic correlates of prosody; frequency, duration and amplitude”.
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Autosegmental-Metrical (AM) approach to intonation ([Pie80, BP86, Lad08]),

prominence is usually marked by a high or low Pitch Accent on the target word;

phrasing is marked by a high or low Boundary Tone on the lengthened final

syllable of the phrase; and an additional tonal element, a high or low Phrase

Accent, controls the F0 between the last pitch accent of a phrase and the boundary

tone on the final syllable. The AM approach proposes a sparse string of such High

and Low tonal targets, represented independently from the segmental/word string

but associated with it, to define each Intonational Phrase.

A challenging issue in spoken prosody is the difficulty of specifying the acoustic

correlates of these tonal elements. One problem relates to the height of the target

in the F0 space: these entities are usually defined in relational terms which are

difficult to quantify absolutely. For example, the F0 level associated with a high

pitch accent for one speaker, while higher than a low pitch accent for the same

speaker in the same context, might correspond to the F0 level of a low accent

for another speaker. Similarly, because the overall pitch range often declines

during an utterance, a paragraph or a conversational turn ([Cha93, HP86]), a

high pitch accent late in a constituent may actually have a lower F0 than a low

pitch accent that occurred earlier. Thus, it is difficult to specify a threshold for

F0, above which the target is a high pitch accent and below which the target is a

low pitch accent, for all speakers or even for a single speaker. Another problem

relates to the alignment of the target with the text in time. For example, there

is good evidence that the alignment of the F0 turning point associated with one

tonal target can be influenced by the position and type of adjacent tonal targets

([SP90, ALM06, AG07]). Finally, in addition to questions about F0 levels and

text alignment, there are gaping holes in our understanding of other candidate

acoustic correlates of tonal targets, although valuable work has been done on the

parameters of intensity (e.g. [KGC05]), duration (e.g. Turk and colleagues) and
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voice quality (e.g. [PT91, DSO96]). In this chapter, we examine a few of the

acoustic correlates of two kinds of American English pitch accents, high (denoted

by H∗) and low (denoted by L∗), and how the presence of adjacent phrase accents

and boundary tones on the same word can affect these correlates.

This study was inspired by some puzzling results in earlier work (Section 4.5),

i.e. a striking difference in the alignment of the F0 peak associated with a H∗, in

two different words which appeared in two different positions in the intonational

phrase: Dagada gave Bobby doodads. That is, when the H∗ fell on the earlier

target word, Dagada, its peak aligned near the end of its stressed syllable (-ga-),

but when the H∗ fell on the later word, doodads, it aligned earlier in its stressed

syllable (doo-). Because the two pitch accent contexts differed in several ways, it

was not possible to determine which of several potential factors was responsible

for the difference in peak alignment. For example, the two words differed in the

quality of the stressed vowel, /a/ vs /u/, a factor that has been proposed by

[JM07] to influence alignment. In that work, statistical analysis showed a corre-

lation between vowel height and peak alignment, with high-vowel and low-vowel

peak positions differing by approximately 11%. However, the corpus consisted

of uncontrolled sentences selected from a newspaper corpus, which made it dif-

ficult to exclude other possible influences such as phrase position and stress as

possible contributors to those results. Section 4.5’s target words Dagada and

doodads also differed in a number of other ways, which may have contributed

to the observed alignment difference; they had different numbers of syllables,

different positions of the main-stressed syllable in the word, and different posi-

tions of the word in the utterance. Finally, the two words differed in whether or

not, in addition to the pitch accent, they also carried the boundary-related tones

(phrase accent and boundary tone) for the intonational phrase. Dagada, which

carried no boundary tone because it occurred early in the phrase, showed a later
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F0 peak alignment than doodad, which was the last word in the phrase and so

did bear the boundary tone on its final syllable and the phrase accent before it.

Because a number of studies have suggested that closely adjacent tonal targets

may influence each other’s alignment, in the configurational context described as

tonal crowding ([SP90, ALM06]), we designed this follow-up study to determine

whether tonal crowding could account for the observed differences in alignment

reported. The expanded corpus was carefully designed to control for factors such

as vowel context, while systematically varying the number of syllables, stress pat-

tern and structural position of the target word in the intonational phrase (early

vs. late, phrase-final vs. non-final). In this way, we sought to test the hypothesis

that tonal crowding from a boundary tone can result in early location of the

extremum of the F0 excursion associated with a pitch accent, and to determine

whether other factors such as word length, stress pattern and early vs. late (but

not final) position in the phrase have an effect. In particular, we hypothesize that

the F0 peak for a H∗ accented syllable will be consistently located in or just after

the accented vowel in a wide variety of contexts, i.e. for words located early or

late (but not finally) in the phrase, and for words with various numbers of syl-

lables and locations of main stress, because in these conditions there is no need

to make room for boundary tone targets later in the same word. However, if the

accented word is phrase-final, so that boundary tones occur in the same word, the

speaker will realize the peak earlier in the accented syllable, as predicted by tonal

crowding, and perhaps at a lower F0 value as well. In addition, earlier results

led us to hypothesize that the trough for a L∗ accented syllable may not show

such a systematic move toward earlier alignment under conditions of crowding

by immediately-following boundary tones.

In addition to the effects of the alignment of the F0 contour with the spoken

words and syllables, other acoustic features of accents, such as energy levels and
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duration, might also be subject to tonal crowding effects. However, changes in

energy measures (for example, in the presence of boundary tones) are difficult

to predict. Previous studies, such as [SV96b], [SV96a], [KGC05] and [RH06],

have shown that energy measures (typically using spectral balance, intensity or

banded frequency content) are correlated with the presence of stress or pitch

accents, and that these measures tend to rise with the occurrence of these prosodic

events. Based on these findings, we hypothesize that energy values will be higher

([RH06]) for pitch-accented syllables than for unaccented syllables; however, this

difference will be smaller if a boundary tone immediately follows the accented

syllable, due to falling subglottal pressure at the end of an utterance ([Sli07]).

We also hypothesize, based on earlier work, that pitch-accented syllables will

be longer ([TW99]) than unaccented syllables in the same position in the phrase,

and that word-final syllables will also be longer when they occur in phrase-final

position than when they are phrase-medial ([Kla76a, BE94, TS07]). The stim-

ulus set is designed to test these findings from earlier work in a larger number

of speakers, 10 male and 10 female. By including twenty participants in the ex-

periment we hope to shed light on the generalizability of observations about the

acoustic correlates of pitch accents in American English, both across gender and

across individual speakers.

An additional pattern that was observed in Section 4.5 was that H∗ accents

behave somewhat differently from L∗s, and we include analyses of the same type

in this more extensive study. For example, we will test the hypothesis that F0

movements are relatively less extreme for L∗ than for H∗, that the energy increase

associated with pitch accents is less for L∗ than for H∗ even when the number of

pitch periods included in the measure is controlled, and that L∗ accents do not

exhibit the same property of shifting alignment of the F0 trough under conditions
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of tonal crowding as H∗ accents do for the peak.

5.2 Corpus and analysis methods

5.2.1 Corpus

The test corpus used in this chapter was carefully constructed to minimize or

control for various factors, such as vowel type, syllable number and word position,

which could influence the results. This corpus was designed in collaboration

with professors Stefanie Shattuck-Hufnagel, Nanette Veilleux and Sun-Ah Jun.

The corpus consists of spoken elicited utterances with specified pitch accent and

boundary tone locations and types. The utterances are prosodic variations of the

2 sentences, Dagada gave Anne a dada and A dada gave Anne dagadas, with the

target words being dagada and dada. For each utterance, a single pitch accent

(H∗ or L∗) is produced on either the early target word or the late one, in either a

declarative setting or an interrogative setting. The nonsense words dagada and

dada were used to ensure that the lexically-stressed syllables carrying the pitch

accents (-ga- and da-, respectively) had the same vowel in all cases, avoiding any

vowel-specific effects. The declarative and interrogative forms of the sentences

were used to elicit the phrase-final tone sequences L–L% for H∗ utterances and

H–H% for L∗ utterances, on the assumption that opposite polarity for the accent

vs. the pitch accent and boundary-related tones would increase the chances of

obtaining clearly-detectable F0 peaks and troughs for the accents. The eight

configurations of the sentences are listed below, with the accented target word in

bold font.

• Dagada gave Anne a dada.

H∗ L–L%
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• A dada gave Anne dagadas.

H∗ L–L%

• A dada gave Anne dagadas.

H∗ L–L%

• Dagada gave Anne a dada.

H∗ L–L%

• Dagada gave Anne a dada?

L∗ H–H%

• A dada gave Anne dagadas?

L∗ H–H%

• A dada gave Anne dagadas?

L∗ H–H%

• Dagada gave Anne a dada?

L∗ H–H%

These same eight sentences were also recorded with the unaccented word daily

added at the end of the sentences, to carry the boundary tone; this allowed us to

determine the effects on the pitch accent realization in the late target word when

the boundary tone was moved to a following word. Each of these 16 sentences

was elicited with a prompt question or statement, to ensure the correct placement

of the tones. For example, to elicit a H∗ tone on the early target word dagada,

and a L–L% boundary tone on the unaccented late target word dada:

Prompt: Was it Dagada or Daguda that gave Anne a dada?
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Response: Dagada gave Anne a dada.

Recordings were made for 20 native speakers of American English (10 males/10

females) between the ages of 17 and 30. Some of the speakers were recorded un-

der the supervision of Professor Shattuck-Hufnagel at MIT, while the remainder

were recorded at the UCLA Department of Linguistics under the supervision of

Professor Jun. Some of these speakers were phonetically trained; for the speakers

who were not phonetically trained, their responses were checked for the correct

placement of the pitch accents and boundary tones. For each sentence, 5 repe-

titions were recorded, for a total of 1600 utterances. The recordings were made

in a sound booth at an effective sampling rate of 16 kHz. Manual segmentation

of the target words dagada and dada from their context and of their main stress

vowel were performed.

5.2.2 Analysis methods

Measures related to the F0 contour, energy, and duration were estimated for

the analysis of the target words and main-stress syllables. F0 measures were

extracted with the VoiceSauce application (Section 4.2) with a frame shift of

1 ms. Legendre polynomials of orders 3 to 7 were fitted to the F0 values for each

of the target word as in Section 4.5.3. Examples of such fits are shown in Figures

5.1 and 5.2 for high and low pitch accented target words, respectively.

The F0 minimum and maximum values were calculated from the smoothed

contours and normalized to each speaker’s mean F0 value (F0). F0 is the average

F0 over all of that speaker’s utterances. The minima and maxima were expressed

as a percentage of the speaker’s F0. For example, the normalized value for a

particular F0 maximum (F0max) is calculated as (F0max − F0)/F0 × 100%.

Energy measures were calculated through VoiceSauce with a variable window
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Figure 5.1: Example of polynomial fitting for the target word dagada with a high

(H∗) pitch accent. The top panel shows the waveform, the bottom panel shows the raw

and stylized F0 contours. The dotted vertical lines mark the position of the manual

segmentation.
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Figure 5.2: Example of polynomial fitting for the target word dada with a low (L∗)

pitch accent. The top panel shows the waveform, the bottom panel shows the raw

and stylized F0 contours. The dotted vertical line marks the position of the manual

segmentation.
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size set to 3 pitch periods, as determined by the STRAIGHT-estimated F0 value

at that point. For example, the F0 value at the H∗ peak in Figure 5.1 has a value

of 255 Hz; with a sampling frequency of 16 kHz, this leads to a window size of

	16000/255 × 3
 = 188 samples. Utterances were normalized to have the same

maximum energy value. The energy of each syllable is normalized with respect

to the utterance’s mean energy value and then used in ANOVA tests.

The duration of each main-stressed vowel was obtained from the manual seg-

mentation. Onset and offset times were taken at the points where there was

evidence of syllable closure or release, such as the abrupt fall in signal amplitude

or the sudden loss of signal periodicity. These points are shown in Figures 5.1

and 5.2 as the vertical dotted lines.

The results of the analyses were grouped according to the gender of the speak-

ers. This was done due to the well-known physiological and acoustical differences

between male and female speakers ([Tit89]). Furthermore, it was shown in [ISA07]

that many measures related to the voice source were dependent on the value of

F0 and thus, may be attributed to gender differences.

5.3 Results

We focused on the vowels in the main-stress syllables of the target words, which

had relatively clear boundaries. We distinguish between several properties of

the analyzed syllables: early vs. late position of the target word in the utter-

ance; for late position, boundary vs. non-boundary position; position of the

lexically-stressed syllable in the target word (medial in dagada, initial in dada);

accentedness (accented vs. non-accented) and if accented, whether the accent

was H∗ or L∗. No vowel effects were examined because the same vowel /a/ was
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intentionally used in all target syllables.

Four types of positions were examined, illustrated here with the labels no-

bnd-early, bnd, no-bnd-early-daily and no-bnd-late-daily for declarative sentences

with the target word, dagada, where the -ga- syllable is always stressed and can

be accented or not:

1. no-bnd-early: Dagada gave Anne a dada.

2. bnd: A dada gave Anne dagadas.

3. no-bnd-early-daily: Dagada gave Anne a dada daily.

4. no-bnd-late-daily: A dada gave Anne dagadas daily.

Additionally, in this section, for notation purposes, we will refer to all non-

boundary (no-bnd-early, no-bnd-early-daily and no-bnd-late-daily) cases as no-

bnd and all unaccented cases as no-acc.

Analysis of variance (ANOVA) tests were performed using the software pack-

age SPSS (v. 16.0) to check for the statistical significance of the results. The two

fixed factors, speaker and accent tone (H∗/L∗), or speaker and boundary (yes/no,

and if yes, H–H%/L–L%) were used to examine the effects on the measures. Be-

cause of the large number of tests done, tests where the null hypothesis has a

probability of p < 0.001 were considered to be statistically significant.

We present the results based on our hypotheses made earlier, that is 1) tonal

crowding affects the position and height of the F0 maxima/minima of a pitch-

accented syllable, and 2) phrase final lengthening is increased when the phrase

final word also includes an accent. We also examined energy measures to deter-

mine the acoustic effects of pitch accents and boundary tones on this parameter.
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5.3.1 F0

To test the hypothesis that tonal crowding has an effect on the acoustic measures

of pitch-accented syllables, we first analyzed the F0 contours of pitch-accented

syllables in words which contained a boundary tone (bnd) vs. those not containing

a boundary tone (no-bnd). To separate out the effects of the serial position of

the word, we then analyzed the F0 measures for the bnd vs. no-bnd-early(-daily)

cases and the bnd vs. no-bnd-late-daily cases.

Tables 5.1 and 5.2 show the results of ANOVA tests when F0 peak/trough

positions and heights are tested against the fixed factors no-bnd and bnd for

the target word dagada and dada respectively. For statistically significant (s.s.)

results, the F ratio and partial η2 (measure of effect size) values are also given.

Table 5.1: Position of the F0 peak/trough as a percentage of the speaker’s vowel

duration. The results shown are averaged for the male and female speakers for the

target words dagada and dada; standard deviation values are shown in parentheses.

The statistical significance (s.s.) column shows the ANOVA results for no-bnd vs. bnd.

For significant results, the F (ratio of the model mean square to the error mean square)

and η2 (measure of the effect size) values are given.

F0 peak/trough Males Females

position mean no-bnd bnd s.s. no-bnd bnd s.s.

(std.) in % F (1,180)/η2 F (1,180)/η2

dagada H∗ 85(17) 65(13) 77.1/.300 92(15) 69(13) 222.8/.537

L∗ 58(14) 52(14) No 59(13) 58(19) No

dada H∗ 83(13) 70(17) 40.0/.188 90(15) 68(13) 139.6/.429

L∗ 51(14) 48(19) No 55(11) 54(14) No

In Table 5.1, the values in the rows represent the mean F0 peak/trough po-
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Table 5.2: Height of the F0 excursion as a percentage of the speaker’s mean F0.

Average results are shown for the no-bnd vs. bnd conditions for the male and female

speakers for the target words dagada and dada; standard deviation values are shown

in parentheses.

�F0 Males Females

mean (std.) no-bnd bnd s.s. no-bnd bnd s.s.

in % F (1,180)/η2 F (1,180)/η2

dagada H∗ 24(20) 8(17) 78.7/.305 35(27) 23(28) 46.3/.194

L∗ –26(12) –29(12) No –35(9) –40(16) No

dada H∗ 21(19) 8(17) 41.2/.193 36(25) 23(28) 41.1/.181

L∗ –27(12) –29(11) No –35(8) –42(11) 28.6/.137

sitions relative to the duration of the target vowel, where 50% corresponds to

the middle of the target vowel. For example, for male speakers, the H∗ accented

dagada for the cases where the target word did not also include the boundary

tone (i.e. the no-bnd case) had an F0 peak which occurred, on average, at a

position which was 85% of the mean vowel duration with a standard deviation

of 17%. This is in contrast to the case where the target word also carried the

boundary tone (bnd), which had a position of 65% of the vowel duration. No

statistically significant effects were observed for L∗ accented target words. The

results are similar for the target word dada, again showing the shift of the peak

to an earlier position in the presence of the boundary tone.

In Table 5.2, the values in the rows denote the mean F0 peak/trough excursion

relative to the mean of the speaker’s F0 values in percent; i.e. 0% corresponds to

a peak/trough exactly at the speaker’s mean F0 calculated over all the speaker’s

utterances. For example, for the female speakers producing dada in the non-
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boundary condition (no-bnd), the H∗ accent resulted in an F0 peak which was

on average 36% higher than the speaker’s mean F0, while for the boundary case

(bnd), the F0 peak was only 23% higher, showing a lesser excursion of F0 for the

pitch accent in the presence of a boundary tone on the same word. Note that the

boundary tone for a H∗/L∗ accented target word is L–L% and H–H% respectively.

The ANOVA tests show that regardless of gender, for the H∗ accented vowels

the no-bnd/bnd factors have a statistically significant effect on both the position

and height of the F0 peak. For both target words, the no-bnd case had an F0 peak

position which occurred much later than the bnd case and peak heights that were

greater. Interestingly, the L∗ accented vowels showed no statistically significant

shift in height or duration, with the exception of dada for female speakers for the

height factor, where a weak effect size (η2 = 0.137) is observed.

Since the no-bnd case contains instances where the pitch-accented word is

at the start of the sentence (no-bnd-early and no-bnd-early-daily) and near the

end of the sentence (no-bnd-late-daily), it is possible that the serial position of

the word may also affect the results, although this was not hypothesized. For

example, if F0 declination occurs over the course of the utterance, the F0 peak

for a H∗ may be lower for an accent that occurs late in the utterance than for an

accent that occurs early. To confirm that tonal crowding rather than declination

is the main cause of the lower F0 peak, we also analyzed the F0 contour peak and

height by comparing bnd vs. no-bnd-early(-daily) and bnd vs. no-bnd-late-daily.

Figures 5.3 and 5.4 show the F0 peak positions for H∗ for a typical male/female

speaker producing dagada/dada respectively in the three different contexts; note

that the no-bnd-early and no-bnd-early-daily cases showed similar results, hence

were considered together. For these two speakers, it can be seen that the bnd

cases generally had earlier F0 peaks compared to both of the other two cases,
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no−bnd−early/no−bnd−early−daily  
bnd
no−bnd−late−daily

Figure 5.3: Scatter plot for the target word dagada showing relative F0 peaks for H∗

and their relative positions in the accented target vowel for a male speaker in three

different contexts: 1. no-bnd-early/no-bnd-early-daily (triangles); 2. bnd (crosses); 3.

no-bnd-late-daily (circles).

indicating the temporal crowding effect of the boundary tone. The male speaker

(Figure 5.3) also had F0 peaks that were significantly lower for the bnd case than

the other two cases, while for the female speaker (Figure 5.4) the F0 peaks for the

bnd case was lower than the no-bnd-early(-daily) case and similar to the no-bnd-

late-daily case, indicating the possible compression effects of the boundary tone.

These trends were observed for 8/10 male speakers and 9/10 female speakers.

Note that the ANOVA tests in this section were carried out using the results

from all speakers, including those that did not conform to the general trend.

Statistical analysis comparing F0 peak/trough position and height for the

bnd vs. no-bnd-early(-daily) conditions are shown in Tables 5.3 and 5.4 respec-
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Figure 5.4: Scatter plot for the target word dada showing relative F0 peaks for H∗

and their relative positions in the accented target vowel for a female speaker in the

three different contexts.
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tively, for target words dagada/dada. Similar to the trends shown in Tables 5.1

and 5.2 for the bnd/no-bnd comparison, it can be seen that for the H∗ pitch

accent, the position and height of the F0 peak are affected significantly by the

presence/absence of the boundary tone, with the no-bnd-early(-daily) peak oc-

curring later and higher than the bnd case. For example, for female speakers

the H∗ accented target word dagada showed a peak position difference of 27%

(from 69% to 96%) and a height difference of 18% (from 23% to 41%) when

comparing the bnd case to the no-bnd-early(-daily) cases. L∗ accented words did

not exhibit any statistical significance for the position measure, except for male

speakers for the target word dagada which showed a small effect size (η2 = 0.104).

Similarly, although the height measure differences for L∗ accented target words

are statistically significant, the difference between the means for the bnd and

no-bnd-early(-daily) conditions are small with a relatively weak effect size.

Table 5.3: Position of the F0 peak/trough as a percentage of the speaker’s target

vowel duration. Results shown are average values for the male and female speakers for

target words dagada and dada in the no-bnd-early(-daily) vs. bnd condition; standard

deviation values are shown in parentheses.

F0 peak/trough Males Females

position mean no-bnd- bnd s.s. no-bnd- bnd s.s.

(std.) in % early F (1,270)/η2 early F (1,270)/η2

(-daily) (-daily)

dagada H∗ 85(17) 65(13) 167.3/.565 96(15) 69(13) 292.1/.678

L∗ 59(14) 52(14) 14.9/.104 61(13) 58(19) No

dada H∗ 84(11) 70(17) 36.0/.229 93(15) 68(13) 171.1/.563

L∗ 52(13) 48(19) No 55(9) 54(14) No
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Table 5.4: Height of the F0 excursion as a percentage of the speaker’s mean F0.

Results shown are for the no-bnd-early(-daily) vs. bnd conditions; standard deviation

values are shown in parentheses.

�F0 Males Females

mean (std.) no-bnd- bnd s.s. no-bnd- bnd s.s.

in % early F (1,270)/η2 early F (1,270)/η2

(-daily) (-daily)

dagada H∗ 26(19) 8(17) 71.6/.372 41(22) 23(28) 113.8/.461

L∗ –24(11) –29(12) 32.8/.204 –34(7) –40(16) 19.3/.130

dada H∗ 26(19) 8(17) 71.6/.372 41(22) 23(28) 113.8/.461

L∗ –26(12) –29(11) 45.8/.259 –35(8) –42(11) 23.6/.153

Tables 5.5 and 5.6 show the F0 results when the target words are tested

for the no-bnd-late-daily vs. bnd effect for the position and height measures,

respectively. Similar to the previous results, it can be seen that, regardless of

gender and target word, the H∗ accented F0 peak, on average, occurred much

later for the no-bnd-late-daily case and these results were statistically significant.

Height differences were less consistent than position differences, with only the

male speakers showing statistical significance for the target word dagada. For L∗

accented syllables, only female speakers for the height measure on the target word

dada showed any statistical significance, and the effect size is relatively weak.

These results are consistent with our hypothesis that the F0 peak for an H∗

accent is usually located towards the end or just after the accented vowel, unless

the need to realize other tonal targets (such as a boundary tone) on the same word

causes the speaker to realize the peak earlier in the accented syllable, presumably

in order to make room for the realization of the additional targets. This further
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Table 5.5: Relative position of the F0 peak/trough as a percentage of the speaker’s

target vowel duration. Results shown are average vales for the male and female speakers

for target words dagada and dada in the no-bnd-late-daily vs. bnd condition; standard

deviation values are shown in parentheses.

F0 peak/trough Males Females

position mean no-bnd- bnd s.s. no-bnd- bnd s.s.

(std.) in % late- F (1,183)/η2 late- F (1,183)/η2

daily daily

dagada H∗ 80(17) 65(13) 55.5/.404 86(13) 69(13) 202.2/.697

L∗ 55(13) 53(14) No 56(13) 58(19) No

dada H∗ 80(15) 70(17) 11.6/.125 83(14) 68(13) 117.6/.586

L∗ 48(14) 48(19) No 54(13) 54(14) No

supports the hypothesis that the location of the F0 peak for an H∗ is affected

more by tonal crowding ([ALM06]) from boundary tones than by the mere serial

position of the accented word, or by its number of syllables. Interestingly, the

F0 peak position on average is later for the female speakers than for the males;

this may be due to larger relative change in F0 which could require more time

to achieve. The lack of a consistent trend for L∗ pitch accented syllables is as

predicted, and suggests the implementation of L∗ accents may be governed by

different principles from those governing H∗ accents. These results also highlight

the fact that cues which are found to be correlated with H∗ pitch accents may

not necessary be correlated with L∗ accents; so that it is important to separate

pitch accents into H∗ and L∗ categories when analyzing their correlates.

The results for the height measure for the H∗ accented syllables were seen to

be more consistent for utterances which had the accented syllable at the start
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Table 5.6: Relative height of the F0 excursion as a percentage of the speaker’s mean

F0. Results shown are for no-bnd-late-daily vs. bnd ; standard deviation values are

shown in parentheses.

�F0 Males Females

mean (std.) no-bnd- bnd s.s. no-bnd- bnd s.s.

in % late- F (1,183)/η2 late- F (1,183)/η2

daily daily

dagada H∗ 19(23) 8(17) 49.4/.376 24(29) 23(28) No

L∗ –29(11) –29(12) No –38(11) –40(16) No

dada H∗ 13(16) 8(17) No 26(27) 23(28) No

L∗ –30(11) –29(11) No –36(8) –42(11) 15.2/.159

of the sentence (i.e. no-bnd-early(-daily)). For these cases, the F0 peak was

consistently higher than for the boundary cases. Although this trend was also

seen for the utterances which had the late accented syllable (no-bnd-late-daily),

those results were not statistically significant. This may be an effect of the need to

realize the final low boundary tone (L–L%) on the word daily, which immediately

follows the pitch-accented word. Another possible explanation is that the height

of the F0 peak for the late accented syllable may be influenced by the natural F0

declination which can occur over the course of declarative statements.

5.3.2 Energy

We hypothesized that the energy change for a pitch accent might be similar

across gender and pitch accent type, but different in boundary vs. non-boundary

conditions, because of respiratory and subglottal pressure changes at the end of

an utterance ([Sli07]). Figures 5.5 and 5.6 show, respectively, the scatter plots
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no−bnd−early/no−bnd−early−daily  
bnd
no−bnd−late−daily

Figure 5.5: Scatter plot of relative mean vowel energy of the H∗ accented vowel for

the target word dagada for all male speakers in three different contexts: 1. no-bnd-

early/no-bnd-early-daily (triangles); 2. bnd (crosses); 3. no-bnd-late-daily (circles).

for male/female speakers of the relative mean energies for the H∗ accented vowel

where the target word is dagada/dada in the three conditions, no-bnd-early(-

daily), bnd, and no-bnd-late-daily. The y-axis represents the change in relative

energy in relation to the average energy of each utterance in percent, so a 100%

value would correspond to twice the average utterance energy. It can be seen that

for most speakers the boundary (bnd) case provides, on average, the least change

in energy compared with the non-boundary cases (no-bnd-early, no-bnd-early-

daily and no-bnd-late-daily). The considerable overlap between the no-bnd-daily

and the bnd cases suggest that, for some speakers, the fall in energy could occur

as early as the accented syllable of a penultimate word.

Two-way ANOVA results for the energy measure separated by gender, pitch

accent tone-type and presence of adjacent boundary tones are shown in Tables 5.7

and 5.8 for target word dagada and dada, respectively. The values represent the

percentage of change of the mean target syllable energy from the mean utterance
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Figure 5.6: Scatterplot of relative mean vowel energy of the H∗ accented vowel for

the target word dada for all female speakers in three different contexts: 1. no-bnd-

early/no-bnd-early-daily (triangles); 2. bnd (crosses); 3. no-bnd-late-daily (circles).

energy. For example, the first row in Table 5.7 shows that the average energy

of the H∗ accented vowel for male speakers in the no-bnd/bnd case is 131/30%

higher than the mean energy of the utterance, statistically significant with an F -

value of 114.2 and effect size of 0.382. It can be seen that on average, the change

in energy was lower for the bnd case than for the no-bnd case regardless of gender

and pitch accent. This trend also extends to the non-accented cases (no-acc) for

both the interrogative (H–H%) and declarative (L–L%) utterances. Interestingly,

L∗ accented syllables had a lower energy change than H∗ accented syllables and

for female speakers, the energy change, on average, was significantly lower than

even the no-acc cases. There were also significant differences associated with

pitch accent type; for example, energy values generally showed greater variance

for males across boundary conditions, and values were higher for H∗/no-acc(H–

H%) than for L∗/no-acc(L–L%) regardless of gender. Thus, as with the F0 peak

location, the results for energy show the importance of context information in
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understanding the acoustic correlates of tonal targets.

Table 5.7: Relative energy mean, standard deviation (std.) in parenthesis, of stressed

syllables for the target word dagada for male and female speakers. Results are shown

for no-bnd vs. bnd.

Energy Males Females

mean (std.) no-bnd bnd s.s. no-bnd bnd s.s.

F (1,185)/η2 F (1,185)/η2

H∗ 131(80) 30(51) 114.2/.382 125(74) 9(39) 132.9/.409

L∗ 36(72) –10(49) 39.1/.172 –11(57) –54(34) 31.4/.147

no-acc(H–H%) 36(52) –17(38) 50.9/.215 35(48) 13(40) 14.2/.073

no-acc(L–L%) 3(61) –67(26) 68.6/.271 4(65) –79(13) 94.9/.338

5.3.3 Duration - effects of pitch accent on phrase final lengthening

Predictions about the effects of pitch accent on phrase-final lengthening are com-

plex, since several different factors are at work. These include duration length-

ening associated with main lexical stress ([BE94]), with the main-stress syllable

of the phrase-final word ([TS07]), with the final syllable of the phrase ([Kla76b])

and with a pitch accent ([TW99]). We hypothesized that phrase-final lengthen-

ing might increase with the addition of a pitch accent on the phrase-final word,

possibly in order to allow the speaker more time to achieve both prosodic tar-

gets. In this section, we first test the effects of high and low pitch accents on

duration and target word position. We then test the phrase-final-lengthening ef-

fects in our corpus by comparing the final syllable durations for the non-accented

words dagada and dada in the late vs. early vs. bnd conditions; the late case

is where the unaccented word is positioned before the word daily, the early case
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Table 5.8: Relative energy mean, standard deviation (std.) in parenthesis, of stressed

syllables for the target word dada for male and female speakers. Results are shown for

no-bnd vs. bnd.

Energy Males Females

mean (std.) no-bnd bnd s.s. no-bnd bnd s.s.

F (1,185)/η2 F (1,185)/η2

H∗ 140(68) 38(42) 178.0/.490 116(63) 24(34) 108.7/.369

L∗ 34(61) –12(45) 49.4/.210 –30(49) –50(32) 16.0/.081

no-acc(H–H%) 32(58) –3(50) 20.6/.099 31(46) 14(36) No

no-acc(L–L%) 5(60) –66(32) 71.1/.278 5(65) –75(17) 91.0/.322

is where the unaccented word appears at the start of the utterance and the bnd

case is where the unaccented word is the phrase-final word. The main-stress syl-

lable lengthening effect of the phrase-final word is then tested by comparing the

stressed-syllable durations of the non-accented dagada and dada in the late vs.

early vs. bnd condition. Finally, the hypothesized extra phrase-final lengthening

effect is checked by comparing the final-syllable durations of the target words for

the no-bnd-early vs. bnd conditions.

Figure 5.7 shows the average durations, for male and female speakers, of

the main-stressed syllable (-ga-) for the target word dagada in the early, late

and boundary conditions. It can be seen that regardless of word position, the

average duration for the Non case is much lower than for either L∗ or H∗ cases,

confirming the durational lengthening associated with pitch-accents ([TW99]).

While ANOVA tests on the tone-type showed that the results are statistically

significant, post-hoc analyses revealed that the L∗ and H∗ accented durations are

virtually indistinguishable. This result means that while durational lengthening
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Figure 5.7: Average main-stressed syllable duration with no (Non), L∗, and H∗ pitch

accents for male and female speakers for the target word dagada in the early, late and

boundary positions.

occurs in the presence of pitch-accents, it is not affected by the pitch-accent type.

Furthermore, the results also show that the boundary position has on average

longer durations for the Non, L∗ and H∗ cases than for both the early and late

positions. Results for the target word dada are similar.

Figure 5.8 shows the comparisons of the average durations and the corre-

sponding error bars of the final syllable (dagada and dada) for male and female

speakers. The effects of phrase final lengthening can be clearly seen in the longer

average duration for the boundary case. This result is statically significant for

both words when the fixed factors, speaker and word position, are used in an

ANOVA test; for male speakers, F (2/2,381/383) = 413/414, p = 0.000/0.000,

and η2 = 0.68/0.68 and for female speakers, F (2/2,377/384) = 489/486, p =

0.000/0.000 and η2 = 0.72/0.72 for the unaccented words dagada/dada. Note

that the two no-boundary cases, early and late, are not significantly different

in their averaged final-syllable durations, indicating that for the late case, the

129



male female
0

20

40

60

80

100

120

140

160

180

200

220

A
ve

ra
ge

 s
yl

la
bl

e 
du

ra
tio

n 
(m

s)

 

 

male female

late
early
boundary

dadagada da

Figure 5.8: Average final vowel durations and error bars of the unaccented words

dagada and dada for male and female speakers in the late, early and boundary posi-

tions. The increased duration for the boundary case confirms the effects of phrase final

lengthening.

final vowel may not be close enough to the boundary for boundary-related effects

to appear. This may be because it is too far away in time or because of the

intervening word boundary.

Figure 5.9 shows the comparisons of the average durations and the corre-

sponding error bars of the main-stressed syllable (dagada and dada) for male

and female speakers, when the target words are unaccented and in the late, early

and boundary conditions. It can be seen that the boundary case has the largest

average duration for both target words and for both genders. These results

were all statistically significant (p < 0.001) and confirm the lengthening effect of

boundaries on unaccented main-stress syllables reported in [TS07].

Figures 5.10 and 5.11 show a comparison of the average durations of the

final vowel for male and female speakers for the target word dagada and dada

130



male female
0

20

40

60

80

100

120

140

160

180

200

A
ve

ra
ge

 s
yl

la
bl

e 
du

ra
tio

n 
(m

s)

 

 

male female

late
early
boundarydaga dadada

Figure 5.9: Average main-stressed vowel durations and error bars of the unaccented

words dagada and dada for male and female speakers in the late, early and boundary

positions. The increased duration for the boundary case confirms the unaccented main-

stressed syllable lengthening at the boundary condition.
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respectively, for three conditions: no accent on the preceding syllable, H∗ accent

on the preceding syllable, and L∗ accent on the preceding syllable. On average,

the duration of the final vowel increased when there was a preceding pitch accent.

However, when the pitch accent was further categorized into H∗ and L∗ cases, it

can be seen that there are some speakers who differ from the general trend;

for example, speaker M1 and speaker F5 showed a shorter duration for the H∗-

preceding condition than for the no-accent condition. Statistical significance tests

of the phrase-final vowel durations against the presence/absence of accent (and

if present, H∗/L∗) confirm the general trends seen in the figures; the ANOVA

results are shown in Table 5.9 and the results were statistically significant for

both genders and target words. Interestingly, the mean durations show that

on average, the L∗-preceding case was marginally longer than the H∗-preceding

case and much longer than the no-accent case. This result indicates that while

there is a slight difference between the L∗-preceding and H∗-preceding cases, the

extra phrase-final lengthening is more dependent on the presence/absence of a

preceding accent than on the type of accent.

5.4 Discussion

Our goals in this work were to test the hypothesis that tonal crowding contributed

to the striking difference in the alignment of the F0 peak associated with H∗ in

phrase-final vs non-final words in Section 4.5, and to explore other aspects of the

acoustic correlates of American English H∗ and L∗ pitch accents. In this section

we first review the implications of our results for these goals (Section 5.4.1), then

discuss the additional insights that emerge from access to results for 20 individual

speakers (Section 5.4.2), and finally discuss in more general terms the concept

of tonal crowding (Section 5.4.3): how this term has been used, the types of
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Figure 5.10: Average final syllable durations for male speakers for phrase final tar-

get word dagada with no preceding accents, with a preceding H∗ accent, and with a

preceding L∗ accent.
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Figure 5.11: Average final syllable durations for female speakers for phrase final

target word dada with no preceding accents, with a preceding H∗ accent, and with a

preceding L∗ accent.
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Table 5.9: Average duration, standard deviation (in parenthesis) of the final syllable

of dagada/dada with no preceding pitch accent, with a H∗ preceding accent, and with

a L∗ preceding accent. All results were statistically significant.

Mean duration Males

(ms) no accent H∗ preceding L∗ preceding s.s.

F (2,174)/η2

dagada 150 (31) 172 (30) 177 (32) 49.1/.361

dada 166 (36) 179 (38) 208 (47) 57.8/.398

Mean duration Females

(ms) no accent H∗ preceding L∗ preceding s.s.

F (2,175)/η2

dagada 154 (24) 175 (35) 185 (34) 81.6/.480

dada 177 (36) 196 (50) 201 (40) 16.8/.163

alignment effects it has been invoked to account for, and potential future steps

toward a more comprehensive theory of how adjacent tones influence each other.

5.4.1 Overall results

In this section, we briefly review the significance of our findings with respect to

the acoustic correlates of F0, energy and duration. Our analysis of F0 correlates

tested the tonal crowding hypothesis, which predicts that the F0 peak for a H∗

pitch accent will be located in approximately the same place with respect to the

accented syllable in all of our conditions, except the one in which the H∗ occurs

on the final syllable of the phrase; in this case the peak is predicted to occur

earlier, because of the crowding effect from the phrase accent and boundary tone

which must be realized later in the same word. This prediction was supported
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by the results: the peak location was not significantly different across the two

target words with different numbers of syllables (dagada and dada), across the

two non-final locations (early and late), across genders and for 17/20 individual

speakers. In contrast, the peak was located significantly earlier in the accented

syllable when the accent occurred on the phrase-final word (i.e. in the boundary

condition), as predicted by the crowding hypothesis. Thus the results for H∗

support our hypothesis that in these utterances tonal crowding on the target

word tends to shift the H∗ F0 peak to occur earlier, presumably to allow room

for the boundary tone to be realized.

The height of the F0 peak for H∗ accents was also reduced for target words

that occurred late in the phrase (i.e. in the bnd and late-no-bnd conditions,

compared to the early condition). This is to be expected if these utterances were

produced with overall global declination in F0. An additional lowering of the F0

peak was found for the bnd condition over the late-no-bnd condition, suggesting a

possible truncation of the F0 rise by the following L–L% tone combination. Note

that truncation can apply to both the time domain and frequency domain.

Interestingly, the F0 troughs associated with L∗ accents did not follow this

pattern of proportionally earlier location in the syllable in response to tonal

crowding; no significant differences were found between the bnd and the two no-

bnd conditions. This raises the possibility that L∗s are more variably realized,

or perhaps are governed by a different set of principles than H∗ accents. We

note that [AG07] found that the F0 trough for the L in their L+H∗ accents was

aligned more consistently than the F0 peak for the H∗, which they also view as

evidence that L and H tones have different properties. Similarly, [ALM06] found

significant differences in the behavior of the H and L targets in their study of

Greek Polar Questions (see Section 5.4.3 below for further discussion).
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Our predictions for comparisons of energy levels in accented syllables were

that, as in earlier work, accented syllables would have higher energy levels, but

that the difference might be less in the bnd condition because of falling subglottal

pressure in the phrase-final word. The results were consistent with this prediction:

energy differences between accented and unaccented syllables were smaller on

average for the bnd case than for the other cases, regardless of gender and pitch

accent. The energy difference between accented and unaccented syllables is less

on average for L∗ than for H∗, and less for L–L% compared to H–H%. This result

is somewhat surprising because our analysis method, which takes a window of

three pitch periods, was designed to neutralize any effects of F0 levels themselves

by using pitch-synchronous energy. Thus the smaller energy difference for L∗ and

for L–L%, like the results for F0 alignment, raises the possibility that L targets

are governed by different principles than those that govern H targets.

Our results for duration showed that phrase-final syllable durations were, on

average, longer when the immediately preceding syllable carried a pitch accent.

This may be because the duration increase associated with a pitch accent can

extend into the following syllable, as reported by [TW99]. Furthermore, it was

found that, on average, syllables with preceding L∗ accents have longer duration

than syllables with preceding H∗ accents. The longer duration attributed to

syllables with preceding L∗ accents may be due to the shorter time required to

achieve the preceding falling pitch. This durational difference in high and low

pitch changes has been reported in [OE73] and [Sun79], and was later confirmed

in [XS02]. A shorter time required to complete the preceding L∗ accent leaves

more time for the final syllable. Similarly the longer time required to achieve

a rising pitch can be attributed to the subsequent shorter duration of a final

syllable which has a preceding H∗ accent. This result is yet one more indication

that L∗ and H∗ pitch accents are not implemented in the same way. Speaker-
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specific differences were also found, with some speakers not conforming to the

general trends of longer duration for L∗ vs. H∗ and shortest duration for the case

without a preceding pitch accented syllable.

Our duration results are in line with [BE94], [Kla76b], [TS07], and [TW99],

among others, who found lengthening of the phrase-final syllable. In addition to

lengthening of the phrase-final syllable, we found boundary-related lengthening in

the main-stress (penultimate) syllable of both dada and dagada even when these

words were unaccented. This finding extends the results for main-stress-syllable

lengthening in phrase-final position utterance-medially ([TS07]) to main-stress-

syllable lengthening in utterance-final position.

Overall, our results provide evidence that the acoustic correlates of high and

low pitch accents in American English (for read speech) include F0, energy and

duration. By analyzing results separately for H∗ and L∗, we have added to the

growing evidence that these two kinds of pitch accents do not behave in precisely

the same ways. In particular, the lack of evidence for effects of tonal crowding

for L∗s highlights the fact that the parameters of such crowding have not been

thoroughly explored. We discuss some of the requirements for a full theory of

tonal interaction in the final section of this chapter. Before turning to that dis-

cussion, however, we examine the significance of the varying results for individual

speakers.

5.4.2 Individual speaker analyses

The results reported above have the advantage of being normalized for individ-

ual speakers, potentially increasing the power of the analyses. In addition, the

availability of 20 sets of individual results gives some estimate of the range of

variation in the acoustic correlates of tonal targets across speakers, and of the

138



differences in response to contextual factors such as tonal crowding. These differ-

ences are as important as the averaged trends, because they show the difficulty

of placing some speakers into generalized models. The F0 results, shown in Sec-

tion 5.3.1, confirmed the hypothesis that the F0 peak of an H∗ accented syllable

would shift to an earlier point if there was another prosodic target (in this case,

the boundary-related tones) which needed to be realized on the same word. This

trend was observed for 8/10 males and 9/10 females. In this section, the re-

sults for the 2 male speakers, denoted by M1 and M2, and the 1 female speaker,

denoted by F9, who did not conform to the general trends are discussed.

Figure 5.12 shows the scatter plot of the relative F0 peak heights and their

relative positions for the H∗ accented target word dagada for speaker M1. It

can be seen that the boundary cases have minimal effect on the peak positions,

which appear to be clustered around 75% of the normalized vowel duration.

A similar plot was observed for the target word dada, with the peak positions

appearing around 70%. While speaker M1 did not display any reliable shifts in

peak position for any of the three cases, the height of the peak was consistent

with general trends; that is, the bnd case had a smaller change in height than

the no-bnd-early(-daily) and no-bnd-late-daily cases. Thus it appears that this

speaker shares some of the more general response to tonal crowding, i.e. a smaller

F0 excursion for the H∗, but not others, i.e. an earlier F0 peak.

Speaker F9 had F0 peak shifts aligned with the general trend for the target

word dagada, but no peak movement could be seen for target word dada. The

opposite was found for the heights of the F0 peaks, with the target word dagada

not conforming to the expected trend of having a lower relative height for the

bnd condition; for this speaker, the F0 peak height was on average about 30%

higher for the bnd case than for the other cases (rather than lower, as was the
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Figure 5.12: Scatter plot for the target word dagada showing relative F0 peaks for H∗

and their relative positions in the accented target vowel for the male speaker M1 in three

different contexts: 1. no-bnd-early/no-bnd-early-daily (triangles); 2. bnd (crosses); 3.

no-bnd-late-daily (circles).
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general trend). Again, this speaker showed some of the general responses to tonal

crowding, but not as consistently as other speakers, and in at least one measure

showed an idiosyncratic response.

Speaker M2 was unlike the majority of the speakers who had clearly detectable

F0 peaks for the H∗ accented target words, in that he had some F0 contours whose

shape was more similar to a down-stepped (!H∗) accent. This occurred in 5/20

and 13/20 utterances for the target words dagada and dada respectively. Where

there was a detectable F0 peak, this speaker showed no shift of the peak to an

earlier location under conditions of crowding for the dagada targets, and the

relative height of the peak for the bnd case was higher than for the other cases.

Interestingly, informal listening showed that very little audible difference could

be perceived between these three speakers (M1, M2 and F9) and the others.

Table 5.10 summarizes the inconsistencies of these speakers when compared with

the general trends for the bnd case, which were: 1) less F0 peak shift, and 2)

smaller F0 peak change.

Table 5.10: Comparison of the speakers M1, M2 and F9’s F0 peak position and

relative height consistencies with the general trends for the bnd case; a ‘Yes’/‘No’

denotes agreement/disagreement while ‘N/A’ means no enough data was available.

dagada dada

Speaker Less F0 Smaller F0 Less F0 Smaller F0

peak shift peak change peak shift peak change

for bnd case for bnd case for bnd case for bnd case

M1 No Yes No Yes

M2 No No N/A N/A

F9 Yes No No Yes
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On average, the energy measure showed that for cases where the target word

was located at the boundary (bnd), the normalized energy was lowest, followed

by the no-bnd-late-daily cases, with the no-bnd-early(-daily) cases having the

highest energy. This trend was generally adhered to by all of the speakers in

the corpus, although for some speakers there was considerable overlap between

the bnd and the no-bnd-late-daily cases; for example, speakers M3, M6 and M9

shown in Figure 5.5 for the target word dagada. Interestingly, these speakers

also displayed the same behavior for the target word dada, suggesting perhaps

that the energy measure is relatively consistent across the target words for each

speaker.

Duration measure patterns were also fairly consistent across the target words

for individual speakers. It was hypothesized that the phrase-final syllable would

have extra lengthening if it was preceded by a pitch accent, regardless of the type

of pitch accent. This hypothesis was shown to be true for all of the speakers if

the H∗ and L∗ accents were considered together. However, when the pitch accent

types were considered separately, as shown in Figure 5.11 for female speakers

for the target word dada, some speakers (F5 and F8) had a shorter duration for

the H∗ preceding case than the no-accent case. These two speakers also showed

the same characteristics for the target word dagada. Other differences for other

speakers were also found to be consistent across target words, suggesting that

they are not random variation but controlled choices for parameter values.

While our generalized results provide a very compact way to describe the

effects of tonal crowding, the individual differences described in this section show

that acoustic correlates of tonal targets can vary substantially between speakers.

It would be of interest to explore the possibility that these variations reflect

different decisions about which cues to produce, vs. differences in degree of
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control.

5.4.3 Theories of tonal crowding

While the effects of tonal crowding have been described in a number of contexts

([ALM06, AG07, GPN00, Od05]), the principles that govern these effects have

not been fully and systematically explored. Moreover, tonal crowding effects

can be seen as part of the more general question of how F0 and other acoustic

exponents of tonal targets are realized with respect to the segmental content of

an utterance. A number of issues are raised by earlier work in this area, including

the following:

1. What are the options for a speaker when confronted by the need to real-

ize several tonal targets in quick succession? Several different mechanisms

have been proposed, including truncation (i.e. a smaller F0 movement,

[GPN00], compression (i.e. a faster F0 movement, [FJ98]), and deletion

(i.e. elimination of one of the tonal targets, [Lev] for Turkish; [FJ98] for

French). Another possible response is to move one or both of the two target

realizations within their syllables so they occur further apart; articulating

an F0 movement earlier in its syllable would be one response of this type.

Yet another possibility is to lengthen the segmental material, particularly

the syllabic nucleus, i.e. slowing the speaking rate (at least temporarily)

to make time for the realization of complex tone sequences. It appears

that most of the speakers in this experiment, when confronted by tonal

crowding from a pitch accent and boundary-related tones on the final two

syllables of an utterance, chose a combination of a less-extreme F0 move-

ment, a longer duration of the syllable and earlier realization of the F0

peak. The choices that speakers make among these possible alignment ad-

143



justment mechanisms, and the details of how those choices are realized, are

in need of further investigation. For example, when two targets move apart

in response to crowding, does just one of them move to an earlier location,

or do both tonal targets move away from each other?

2. What is the definition of crowding? That is, how close to each other do two

tonal targets have to be, in order to influence each other’s realization, and

how is this distance measured? Is it in terms of time increments, i.e. mil-

liseconds? In terms of the number of voiced phonological segments that are

available to carry the F0? In terms of constituent structure (e.g. syllables)?

Or in some combination of these scales? It has been suggested that, in order

to eliminate the effect of one tonal target on another, it may be necessary

to have two unstressed syllables between the two targeted syllables; others

have suggested that the preferred target-syllable relationship is one target

per syllable ([ALM06, Lev]). This decision is important because its result

will inform the estimation of the preferred, non-crowded realization of a

tonal target sequence, as well as the generation of appropriate algorithms

for natural-sounding synthesis.

3. Do different tonal target types respond differently to crowding? That is,

do all types of tonal targets follow the same principles of interaction? For

example, do two adjacent pitch accents interact in the same way as a pitch

accent followed by a boundary tone? Do bi-tonal targets behave differently

from single tonal targets. High targets differently from Lows? Our results

suggest that L∗ targets behave differently in response to tonal crowding

than H∗ targets, and [SP90] results suggest that pre-nuclear and nuclear

accents respond in largely similar ways. But the full scope of interactions

among various tonal target types has not been investigated.
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4. Do different languages and dialects exhibit different principles of interac-

tion? For example, [GPN00] reported substantial differences in tonal tar-

get interactions in various dialects of British English. Similarly, Mücke and

her colleagues report differences between Viennese and Dusseldorf German

for resolution of such alignment issues ([MGB09]), and [Lev] reports target

deletion by Turkish speakers to prevent tonal crowding.

While we don’t yet have a clear picture of how these issues are resolved in

American English speech, we can test the hypothesis that F0 peaks seem to occur

earlier in syllables that are lengthened phrase-finally, i.e. if the peak occurs at

a fixed number of milliseconds from the V onset, it will seem to occur earlier in

longer syllables. If final lengthening were responsible for the early H∗ peaks, then

in our bnd condition the H∗ peak locations in the raw vowel durations should

show one cluster of points for all three cases (early, late, boundary). Results are

shown in Figure 5.13 which plots the time of the peak in milliseconds from the V

onset against the height of the peak above the mean F0, for two typical speakers,

one male for target word dagada and one female for target word dada. For most

speakers the peak position was significantly earlier for the bnd case, as per our

results for normalized vowel durations, showing that the peak occurs earlier in

absolute as well as relative terms under tonal crowding.

As [SP90] point out, the question of how tonal crowding affects the phonetic

realization of pitch accents and other tonal targets is part of the larger general

issue of tonal alignment. With this in mind, they evaluated several alternative

mechanisms for differences in F0 peak alignment across stimulus types, including

invariant duration of the F0 rise; gestural overlap and trunction; tonal repulsion

with earlier gesture beginning; phonological mediation by the addition of extra

beats to the metrical grid, lengthening the syllable with the result that the F0
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Figure 5.13: Scatter plot showing the times for the raw peak position in milliseconds

from the V onset and the normalized peak heights for the three cases; no-bnd-early(-

daily) (triangles), bnd (crosses) and no-bnd-late-daily (circles). The left panel shows

the times and heights for a typical male speaker for the target word dagada and the

right panel shows the results for a typical female speaker for the target word dada.
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peak occurs earlier; and sonority profile.

In summary, although a clear picture of the factors that govern tonal align-

ment for different tonal target types in various contexts and in different languages

is still emerging, studies such as this one have begun to reveal some aspects

of these patterns for individual languages. It is clear that considerable further

research is needed to clarify the factors that govern the alignment of F0 con-

tours with the words and syllables of a spoken utterance, and how the alignment

changes under conditions of tonal crowding.

5.5 Conclusion

This study compares the acoustic characteristics of two types of pitch accents

in American English (H∗ and L∗) in three types of locations within the phrase

(in early and late non-phrase-final words and phrase-final words), in two types

of target words (two- and three-syllable words) with penultimate lexical stress.

Results for F0 show that for most speakers and for both target words, the F0

peak for a nuclear H∗ accent occurs earlier in conditions of tonal crowding due

to phrase-final boundary tones in the same word, and is realized with a lower

F0. In contrast, F0 troughs for L∗ accents did not show the same effects of tonal

crowding, suggesting that H∗ and L∗ accents may not be realized according to

the same principles. Comparison across 20 individual speakers (10 male and 10

female) revealed that the general findings are robust, but that 3 speakers did

not comport with all aspects of the general findings, raising the possibility that

some speakers may employ idiosyncratic cue patterns. Analysis also showed that

energy levels decrease across the utterance, and that a phrase-final syllable is

longer if the immediately-preceding syllable in the final word is accented than if

it is not. Taken together, these results highlight the importance of taking context
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into account for prosodic analysis.
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CHAPTER 6

Summary and Future Work

6.1 Summary

In this dissertation, the analysis and properties of the voice source with respect

to voice quality were presented.

Chapter 1 introduced the background information on human speech produc-

tion and the linear speech production model including the voice source and vocal

tract components. Also presented were some of the existing source estimation

methods and the definitions and terminology used in voice quality and prosody

analysis.

In Chapter 2, a new source model was derived from glottal area waveform

obtained via high-speed imaging. These direct observations of the vocal folds

revealed some characteristics of the source which were not possible to represent

with existing source models. A new source model was proposed which better

captured the observed glottal area waveforms.

Chapter 3 presented a different approach to the traditional inverse-filtering

technique in estimating the source signal from speech data. Using the LF and

the new proposed source model, a novel codebook search approach was used for

source estimation.

In Chapter 4, a new software, VoiceSauce, was introduced which simplified
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the calculation of common voice source related measures such as H∗
1−H∗

2 , H∗
1−A∗

3,

CPP and HNR, to name a few. This software was used in three applications,

voice quality analysis, automatic gender classification, and prosody analysis.

Chapter 5 analyzed F0, energy and duration in relation to intonational pitch

accents. The effects of having multiple pitch accents in close proximity to each

other were also examined.

The following three sections summarize the key results of the analysis and

properties of the voice source with respect to voice quality.

6.1.1 Source modeling and estimation

In this study, direct observations of the source were made by filming the vocal

folds through high-speed imaging. From these observations it was found that

existing source models were deficient in two main aspects: (1) the duration of

the opening phase has often been assumed to be longer than the duration of the

closing phase, but the reverse was observed, and (2) the speed of opening and

closing was observed to be much faster than what could be specified in existing

models. A new four-parameter (OQ, α, Sop and Scp) source model, derived

from the popular LF model, was proposed to rectify these two aspects. Results

showed that the proposed new source model provided a better fit for the glottal

area waveforms obtained from the high-speed imaging than the LF model.

A new source estimation technique, utilizing a codebook approach with spec-

tral analysis-by-synthesis, was introduced which effectively inverse-filtered the

speech signal, with the source signal instead of the vocal tract as in traditional

inverse-filtering schemes. Results comparing the fitted model parameters with the

estimated model parameters showed that while there were good correlations for

the parameter OQ and moderate correlations for the parameter Sop, there were
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also no significant correlations for the parameters α and Scp. It was hypothesized

that this may have been due to the lack of influence these two parameters had on

the spectral harmonic magnitudes, which were used for the analysis-by-synthesis

in the frequency domain. Analysis showed that high F0 phonations had the most

estimation errors due to the difficulty with estimating the formant frequencies

for high-pitched voices. Error analyses showed that it was important to use an

accurate source model and reasonable formant frequency constraints to obtain

good source signal estimates.

6.1.2 Correlates of voice quality

The VoiceSauce application, which simplified the process of calculating voice

source related measures was used in three different scenarios: voice quality anal-

ysis, automatic gender classification and prosody analysis.

Using the VoiceSauce application, the voice source related measures H1−H2,

H2−H4, H1−A1, H1−A2, H1−A3, Energy, CPP, and HNR were calculated using

the audio data which was collected synchronously with the high-speed imaging.

By comparing these measures with the fitted model parameters, it was found

that on average, the open quotient parameter OQ and the spectral tilt measures,

H1 −A2 and H1 −A3, were affected by both voice quality and glottal gaps. The

asymmetry parameter α, and the measures CPP and the three HNR measures

were found to be predominately affected by voice quality, especially of the breathy

type. This indicated the presence of more spectral noise for breathy phonations

and suggested that asymmetry may be an important part of how the noise is

generated. An interesting positive correlation was found between the parameters

OQ and Sop, which was not replicated for the parameter Scp.

Automatic gender classification using speech measures was found to improve
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with the addition of voice-source related measures H∗
1 − H∗

2 and H∗
1 − A∗

3. The

improvement was particular pronounced for the age groups 10–11 and 12–13 year

olds where traditional features, such as F0 and formant frequencies, were less

useful.

In the analysis of prosody, pitch accents were, as expected, found to be clearly

marked by differences in F0 contours. However, there was a difference in the

positions of the F0 maxima for high (H∗) accented syllables and the F0 minima for

low (L∗) accented syllables, in that the F0 maxima were often found towards the

end of the accented syllable. Lexical stress was found to be denoted by decreases

in H∗
1 − H∗

2 , indicating a tenser voice on the stressed syllable. The spectral tilt

measure H∗
1 − A∗

3 was seen to be gender dependent, but for boundary-related

tones, the measure generally decreased towards the end of the word, denoting an

increase in high-frequency energy.

6.1.3 Correlates of pitch accents

Through the use of a carefully designed speech corpus, analysis of the F0 contours

revealed that, in American English, the position of the F0 peak for a high accent

occurs earlier in conditions of tonal crowding due to phrase-final boundary tones

in the same word, and is realized with a lower F0. In contrast, F0 troughs for low

accented syllables did not show the same effects of tonal crowding, suggesting

that high and low accents may be realized with different principles. Analysis

of the energy levels showed that on average, energy measures were greater if

the target word was at the start of a sentence than at the end. However, the

measures were seen to be dependent on the type of accent, position of the accent

and the proximity of the boundary tone. Duration analysis found that a phrase-

final syllable is longer if the immediately-preceding syllable in the final word is
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accented than if it is not. Overall, the results emphasized the importance of

taking context into account when performing prosodic analysis.

6.2 Unsolved issues and outlook

This dissertation examined the voice source with respect to voice quality from

two different perspectives. The first, through the direct observation of the vocal

folds and the second, through analysis of voice source related measures. Direct

observations of the source allowed for a more accurate source model to be created,

however, there are still some unsolved issues. In the glottal area waveforms shown

in Figure 2.4 and Figures A.1–A.5, it could be seen (more apparent for subject

FM3) that some of the waveforms had a “shoulder” before the main peak. It

is not clear what causes this shoulder effect; no voice source model, to date,

is able to capture this type of waveform. The glottal area waveforms used in

this work were not normalized for the distance of the camera to the vocal folds.

Thus, it was not possible to compare certain characteristics between phonations,

such as the maximum or minimum areas. For example, it is conceivable that a

pressed phonation should have a much smaller maximum glottal opening than a

breathy phonation. Continuous recordings of subjects varying their voice qualities

would help in this regard. The glottal gap and its related effects is another area

which requires more research. Preliminary analysis on a small number of subjects

showed that breathy phonations typically have incomplete glottal closures as well

as increased spectral noise coupled with decreased source asymmetry (parameter

α). At present, it is not clear which is the cause and which is the effect; for

example, is the act of producing spectral noise causing the asymmetry to decrease

or does a decrease in asymmetry produce more spectral noise? More data with

varying phonation types from more subjects are needed to address this issue.
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The work in the first part of this dissertation provided a first look at the

voice source signal, as represented by the glottal area waveform, for three voice

qualities, pressed, normal and breathy. Future exploration should focus on con-

tinuous transitions between voice qualities; for example, from pressed to breathy,

from low F0 to high F0 and from an /I/ vowel to an /æ/ vowel. Observations of

these types of transitions would shed more light into the workings of the vocal

folds. With improving technology, it may soon be possible to achieve the ultimate

goal in voice source analysis, that of direct observations of the voice source in

continuous, natural speech.

The second part of this dissertation focused on voice source/quality analysis

through the use of voice source related measures. Through the high-speed imaging

of the vocal folds, correlations could be made between the physiological data

and the acoustic data. This provided many interesting results, including the

asymmetry and harmonic-to-noise ratio data. More data from more subjects

would allow the relationship between the physiological data and the acoustic

data to be quantified mathematically, which would vastly improve the efficiency

of voice source studies.

Solving the issues described here would lead to a deeper understanding of the

voice source and its effects on voice quality. This knowledge can help improve

practical applications such as speech analysis, speech coding, speaker identifica-

tion, speech recognition and medical applications.
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APPENDIX A

Averaged Glottal Area Waveforms

The averaged glottal area waveforms of subjects FM2–3 and M1–3 are shown

in Figures A.1–A.5. The waveforms were created by the method described in

Section 2.2.3. Note that subject FM2 was unable to produce a pressed phonation

with normal F0 while subject M1 was not able to produce phonations with low

F0 for any voice quality. The averaged glottal area waveforms for subject FM1

can be found in Figure 2.4.
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Figure A.1: The averaged glottal waveforms for the nine phonation combinations

for subject FM2. F0 (low, normal and high) was varied quasi-orthogonally with voice

quality (pressed, normal and breathy). Data for the pressed phonation with normal F0

was not available for this subject.
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Figure A.2: The averaged glottal waveforms for the nine phonation combinations

for subject FM3. F0 (low, normal and high) was varied quasi-orthogonally with voice

quality (pressed, normal and breathy).
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Figure A.3: The averaged glottal waveforms for the nine phonation combinations for

subject M1. F0 (low, normal and high) was varied quasi-orthogonally with voice quality

(pressed, normal and breathy). Data for the low F0 phonations was not available for

this subject.
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Figure A.4: The averaged glottal waveforms for the nine phonation combinations

for subject M2. F0 (low, normal and high) was varied quasi-orthogonally with voice

quality (pressed, normal and breathy).
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Figure A.5: The averaged glottal waveforms for the nine phonation combinations

for subject M3. F0 (low, normal and high) was varied quasi-orthogonally with voice

quality (pressed, normal and breathy).
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APPENDIX B

Glottal Area Model Fitting Performance of the

Proposed New Source Model

Figures B.1–B.6 show the model fitting performance of the proposed new source

model for the averaged glottal area waveforms described in Section 2.2.3. Tables

B.1–B.6 lists the voice source parameters from the model fitting. Note that

subject FM2 was unable to produce a pressed phonation with normal F0, while

subject M1 was not able to produce phonations with low F0 for any voice quality.
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Figure B.1: Model fitting performance of the proposed new source model for subject

FM1.
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Figure B.2: Model fitting performance of the proposed new source model for subject

FM2.
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Figure B.3: Model fitting performance of the proposed new source model for subject

FM3.
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Figure B.4: Model fitting performance of the proposed new source model for subject

M1.
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Figure B.5: Model fitting performance of the proposed new source model for subject

M2.
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Figure B.6: Model fitting performance of the proposed new source model for subject

M3.

167



Table B.1: Voice source parameters from the model fit (see Figure B.1) for subject

FM1. “G. gap” denotes the existence/absence of the glottal gap.

Param. Pressed Normal Breathy

low norm. high low norm. high low norm. high

OQ .4950 .6512 .4785 .9518 .6545 .9595 .9985 .9996 .9188

α .4710 .4328 .5298 .3568 .4163 .4304 .3451 .3980 .3428

Sop .3661 .4739 .4637 .6598 .4651 .5134 .5635 .5867 .5536

Scp .3867 .5708 .6309 .5252 .5384 .6253 .5661 .6113 .6342

G. gap No No No Yes No No Yes Yes Yes

Table B.2: Voice source parameters from the model fit (see Figure B.2) for subject

FM2. “G. gap” denotes the existence/absence of the glottal gap. Pressed, normal F0

phonations were not available for this subject.

Param. Pressed Normal Breathy

low norm. high low norm. high low norm. high

OQ .7548 – .6942 .9146 .9410 .7261 .9718 .9996 .9078

α .5119 – .6006 .5339 .5396 .6033 .4403 .4499 .3921

Sop .5529 – .5171 .5467 .4762 .4805 .4686 .5480 .5067

Scp .4686 – .5435 .4817 .5504 .3834 .6163 .5686 .5606

G. gap No – No Yes Yes No Yes Yes Yes
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Table B.3: Voice source parameters from the model fit (see Figure B.3) for subject

FM3. “G. gap” denotes the existence/absence of the glottal gap.

Param. Pressed Normal Breathy

low norm. high low norm. high low norm. high

OQ .5815 .9786 .7169 .8654 .6735 .9499 .9115 .9955 .9425

α .5821 .4992 .4742 .4325 .5026 .5294 .3619 .4184 .4273

Sop .4883 .5114 .5454 .6981 .6402 .5432 .5878 .6008 .5822

Scp .5628 .6359 .3480 .6885 .6034 .4609 .6057 .6974 .6090

G. gap No Yes No Yes No No Yes Yes Yes

Table B.4: Voice source parameters from the model fit (see Figure B.4) for subject

M1. “G. gap” denotes the existence/absence of the glottal gap. Low F0 phonations

were not available for this subject.

Param. Pressed Normal Breathy

low norm. high low norm. high low norm. high

OQ – .5355 .8288 – .6045 .5655 – .7862 .9865

α – .5387 .4922 – .5582 .7012 – .4188 .4030

Sop – .4013 .5448 – .3380 .3843 – .5810 .4348

Scp – .5836 .6336 – .6668 .5657 – .3786 .6037

G. gap – No Yes – No No – Yes Yes
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Table B.5: Voice source parameters from the model fit (see Figure B.5) for subject

M2. “G. gap” denotes the existence/absence of the glottal gap.

Param. Pressed Normal Breathy

low norm. high low norm. high low norm. high

OQ .6675 .5625 .6290 .8913 .8663 .7681 .9801 .8632 .8719

α .5745 .5067 .4281 .3935 .4329 .3841 .3288 .3296 .3233

Sop .4694 .3758 .5039 .4043 .6331 .4936 .4993 .5150 .4697

Scp .5421 .5771 .6436 .5149 .5423 .5023 .5646 .5221 .5526

G. gap No No No No No No Yes Yes Yes

Table B.6: Voice source parameters from the model fit (see Figure B.6) for subject

M3. “G. gap” denotes the existence/absence of the glottal gap.

Param. Pressed Normal Breathy

low norm. high low norm. high low norm. high

OQ .6030 .6587 .5674 .7455 .7698 .8203 .9802 .8722 .9054

α .4020 .5054 .5630 .4402 .5010 .5062 .4222 .3940 .3702

Sop .4916 .4409 .4969 .4280 .5442 .5707 .5187 .6536 .4895

Scp .5236 .5566 .4750 .5672 .5803 .5584 .4954 .5588 .5201

G. gap No No No No No Yes No Yes Yes
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APPENDIX C

Voice Source Estimation Results for each

Subject

Tables C.1, C.2 and C.3 list the MSE values for the voice source estimation

using the proposed new source model for the Snack-, manual- and constant-

based formant frequency constraints respectively. Results are listed for individual

subjects in terms of voice quality (pressed, normal and breathy) and F0 type

(low, normal and high). ‘–’ denotes that data was not available for a particular

phonation.

Figures C.1–C.6 show the measured and estimated glottal source waveforms

for all six subjects. Note that the measured waveforms have the DC-offset re-

moved. The estimated waveforms were from the Snack- and manual-based for-

mant constraints.
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Table C.1: MSE values for source estimation using Snack-based formant constraints

with the proposed new source model; results listed in terms of voice quality (pressed,

normal and breathy) and F0 type (low, normal and high). ‘–’ denotes data was not

available for a particular phonation.

Subject F0 type Voice quality

Pressed Normal Breathy

FM1 Low 0.0035 0.0290 0.0277

Normal 0.1964 0.0290 0.0123

High 0.0205 0.0873 0.0276

FM2 Low 0.0046 0.0032 0.0231

Normal – 0.0220 0.0250

High 0.0382 0.2684 0.0095

FM3 Low 0.0277 0.0262 0.0242

Normal 0.0148 0.0954 0.0306

High 0.2158 0.0495 0.2995

M1 Low – – –

Normal .0036 0.0067 0.0555

High 0.0405 0.1088 0.0313

M2 Low 0.0339 0.0543 0.0517

Normal 0.0027 0.0238 0.0146

High 0.0064 0.0281 0.0226

M3 Low 0.0092 0.0409 0.0039

Normal 0.0141 0.0224 0.0336

High 0.0303 0.0206 0.0385
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Table C.2: MSE values for source estimation using manual-based formant constraints

with the proposed new source model; results listed in terms of voice quality (pressed,

normal and breathy) and F0 type (low, normal and high). ‘–’ denotes data was not

available for a particular phonation.

Subject F0 type Voice quality

Pressed Normal Breathy

FM1 Low 0.0037 0.0290 0.0314

Normal 0.1774 0.0161 0.0024

High 0.0018 0.0248 0.0260

FM2 Low 0.0026 0.0181 0.0231

Normal – 0.0163 0.0140

High 0.0725 0.0510 0.0110

FM3 Low 0.0277 0.0044 0.0062

Normal 0.0116 0.0552 0.0225

High 0.0089 0.2313 0.0190

M1 Low – – –

Normal 0.0048 0.0040 0.0555

High 0.0463 0.0302 0.0353

M2 Low 0.0339 0.0543 0.0517

Normal 0.0027 0.0210 0.0146

High 0.0380 0.0246 0.0216

M3 Low 0.0092 0.0409 0.0039

Normal 0.0119 0.0140 0.0303

High 0.0303 0.0206 0.0647
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Table C.3: MSE values for source estimation using constant-based formant con-

straints with the proposed new source model; results listed in terms of voice quality

(pressed, normal and breathy) and F0 type (low, normal and high). ‘–’ denotes data

was not available for a particular phonation.

Subject F0 type Voice quality

Pressed Normal Breathy

FM1 Low 0.0030 0.0272 0.0277

Normal 0.1912 0.0180 0.0200

High 0.0062 0.0515 0.0308

FM2 Low 0.0047 0.0142 0.0231

Normal – 0.0212 0.0175

High 0.0693 0.0497 0.0080

FM3 Low 0.0253 0.0209 0.0110

Normal 0.0067 0.0762 0.0225

High 0.0084 0.0426 0.0116

M1 Low – – –

Normal 0.0048 0.0040 0.0555

High 0.0463 0.0302 0.0353

M2 Low 0.0339 0.0543 0.0517

Normal 0.0027 0.0210 0.0146

High 0.0062 0.0389 0.0245

M3 Low 0.0092 0.0366 0.0039

Normal 0.0117 0.0224 0.0295

High 0.0303 0.0206 0.0647
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Figure C.1: Plot of the measured (solid line) and estimated glottal area waveforms

for subject FM1. The estimated waveforms are from the Snack-based (dotted line) and

manual-based (dashed line) formant constraints.
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Figure C.2: Plot of the measured (solid line) and estimated glottal area waveforms

for subject FM2. The estimated waveforms are from the Snack-based (dotted line) and

manual-based (dashed line) formant constraints.
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Figure C.3: Plot of the measured (solid line) and estimated glottal area waveforms

for subject FM3. The estimated waveforms are from the Snack-based (dotted line) and

manual-based (dashed line) formant constraints.
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Figure C.4: Plot of the measured (solid line) and estimated glottal area waveforms

for subject M1. The estimated waveforms are from the Snack-based (dotted line) and

manual-based (dashed line) formant constraints.
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Figure C.5: Plot of the measured (solid line) and estimated glottal area waveforms

for subject M2. The estimated waveforms are from the Snack-based (dotted line) and

manual-based (dashed line) formant constraints.
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Figure C.6: Plot of the measured (solid line) and estimated glottal area waveforms

for subject M3. The estimated waveforms are from the Snack-based (dotted line) and

manual-based (dashed line) formant constraints.
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