The phonetics of contrastive phonation in Gujarati

Sameer ud Dowla Khan*

Department of Linguistics, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202-8199, USA

ABSTRACT

The current study examines (near-)minimal pairs of breathy and modal phonation produced by ten native speakers of Gujarati in connected speech, across different vowel qualities and separated by nine equal timepoints of vowel duration. The results identify five spectral measures (i.e. H1–H2, H2–H4, H1–A1, H1–A2, H1–A3), four noise measures (i.e. cepstral peak prominence and three measures of harmonics-to-noise ratio), and one electroglottographic measure (i.e. CQ) as reliable indicators of breathy phonation, revealing a considerably larger inventory of cues to breathy phonation than what had previously been reported for the language. Furthermore, while the spectral measures are consistently distinct for breathy and modal vowels when averaging across timepoints, the efficacy of the four noise measures in distinguishing phonation categories is localized to the midpoint of the vowel’s duration. This indicates that the magnitude of breathiness, especially in terms of aperiodicity, changes as a function of time. The current study supports that breathy voice in Gujarati is a dynamic, multidimensional feature, surfacing through multiple acoustic cues that are potentially relevant to the listener.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the highly gradient nature of voice quality, and the masking effects of prosody and other components of speech, the acoustic properties associated with linguistic phonation contrasts are extremely complex, and vary considerably both within and across languages. One language whose phonation contrast has been of much interest is Gujarati, which distinguishes modal vs. breathy vowels (e.g. [ba] ‘twenty’ vs. [bɔ] ‘twelve’). While studies of Gujarati agree that these phonation contrasts are phonologically contrastive and that speakers can reliably perceive the distinction, a comprehensive study of its acoustic and articulatory properties is long overdue. Certainly, early acoustic studies of Gujarati breathiness are well-known (e.g. Bickley, 1982; Dave, 1967; Fischer-Jørgensen, 1967; Pandit, 1957, among others; see Section 2.3 for a review), yet many important questions remain. What acoustic and electroglottographic measures reliably distinguish phonation types in Gujarati? Are certain acoustic and electroglottographic differences between phonation types limited to particular parts of the vowel? How does voice quality (i.e. phonation) interact with vowel quality (i.e. height, backness)? And what can acoustic and electrogollographic investigation tell us about the articulatory processes behind this contrast?

The goal of the current study is to answer these questions by examining acoustic and electrogollographic (EGG) data collected from ten Gujarati speakers in a semi-naturalistic laboratory setting. The paper is divided as follows: background and motivation for the current study are provided in Section 2, the methods of data collection and analysis are provided in Section 3, the results of which are provided in Section 4, and lastly a discussion of the results is provided in Section 5.

2. Background and motivation for current study

2.1. General characteristics of breathy voice

Visual observation of the pharynx and glottis by Esling and Harris (2005) and Edmondson and Esling (2006) has identified six “valves” that can be manipulated to adjust voice quality: vocal fold adduction and abduction, ventricular incursion, sphincteric compression of the arytenoids, epiglott-pharyngeal constriction, laryngeal raising, and pharyngeal narrowing. They describe the configuration for canonical breathy voice as involving vibrating vocal folds and partially adducted arytenoids to allow a posterior opening in the glottis, evidently collapsing the categories of breathy voice (murmur) and whispery voice of earlier studies (Catford, 1977; Fant, Liljencrants, & Lin, 1985; Gordon & Ladefoged, 2001; Laver, 1980; Pennington, 2005). Similarly, in the current study, the labels “breathy voice”,
“whispery voice”, and “murmur” are simply collapsed as “breathy voice” to avoid a discussion of nomenclature. Indeed, Laver (1980) describes “breathy voice” (Ladefoged’s “murmur”) as “the range of qualities produced with a low degree of laryngeal effort, and where only a slight amount of glottal friction is audible”, and “whispery voice” as “phonations produced with a greater degree of laryngeal effort, and where a more substantial amount of glottal friction…is audible” (p. 134), suggesting that the two can loosely be considered weaker and stronger variants (respectively) of one voice quality.

This general configuration produces more rounded glottal pulses and continuous airflow, involving a larger open quotient (the more “open” proportion of each glottal cycle) and less abrupt glottal closure, while the uninterrupted airflow past the vibrating vocal folds generates aperiodic noise. Acoustically, this produces a fundamental frequency (F0) with high amplitude (H1) and an increase in aperiodic noise at higher harmonics; thus, most acoustic studies of breathy voice focus on measures of spectral amplitude (Section 2.2.1) and measures of periodicity (Section 2.2.2), although additional acoustic measures (Section 2.2.3) are also found. However, due to the multidimensional nature of the articulatory configurations that can produce breathy voice, it is no surprise that its acoustic output is also multidimensional and highly variable within and across languages (Keating, Esposito, Garellek, Khan, & Kuang, 2010).

2.2. Phonologically-conditioned breathy voice

Much of the established literature on phonation is based on studies of non-phonological voice quality differences. These studies can be divided into two general categories: (1) studies of pathologically-disordered phonation (Childers & Lee, 1991; Kreiman, Gerrat, & Antoñanzas-Barroso, 2006, 2007; Lieberman, 1963) and (2) purely phonetic studies of non-modal phonation in English (Hanson, 1995, 1997; Hanson & Chuang, 1999; Hillenbrand, Cleveland, & Erickson, 1994; Iseli, Shue, & Alwan, 2007; Klatt & Klatt, 1990). However, phonological uses of phonation within languages—both allophonic and contrastive—are arguably distinct (Blankenship, 2002; Hillenbrand et al., 1994, p. 777); like other areas of phonology, contrastive and allophonic voice quality can vary by localization (i.e. timing; Blankenship, 2002), prosodic structure (Choi, Hasegawa-Johnson, & Cole, 2005; Epstein, 2002), sociolinguistic register (Podesva, 2007), phonological environment (Pfiztinger, 2008), and various other factors. These factors are typically artificially controlled in studies of non-phonological voice quality, and thus are less suitable for investigating contrastive and allophonic uses of phonation. Given the research questions of the current study, the following literature review is restricted to studies dealing with phonologically-relevant breathy phonation.

2.2.1. Spectral measures

The increased amplitude of the first harmonic in breathy vowels is typically normalized by comparing it to the amplitude of the second harmonic, i.e. H1–H2. A higher H1–H2 (a measure of spectral balance) was shown in Holmberg et al. (1995) and Henrich (2001) to be a reliable acoustic correlate of a larger open quotient—the relative length of time of each glottal cycle’s more open portion—and has been identified as the most salient acoustic property of breathy voice in Xóö (Bickley, 1982; Ladefoged & Antoñanzas-Barroso, 1985), White and Green (H)mong1 (Andruski & Ratliff, 2000; Huffman, 1987), Shanghainese (Ren, 1992), Jalapa Mazatec (Blankenship, 2002; Garellek & Keating, 2010; Kirk, Ladefoged, & Ladefoged, 1993), San Lucas Quiavini Zapotec (Gordon & Ladefoged, 2001), Xhosa (Jessen & Roux, 2002), Krathing Chong (Blankenship, 2002), Wa (Watkins, 2002), Chanthaburi Khmer (Wayland & Jongman, 2003), Ssua/Kuai (Abramson, Luangthongkum, & Nye, 2004), Javanese (Thurgood, 2004), Ju/toans (Miller, 2007), Takhian Thong Chong (DiCanio, 2009), Santa Ana del Valle Zapotec (Esposito, 2010b), and Southern Yi (Kuang, 2011).

Breathy phonation is also associated with a steeper spectral tilt; this is typically measured as the difference between the amplitude of the first harmonic and that of one of the first three formants. H1–A1 is thought to be correlated with posterior glottal opening at the arytenoids (Blankenship, 2002; Hanson, Stevens, Kuo, Chen, & Sliifka, 2001), while H1–A2 and H1–A3 are thought to be correlated with the abruptness of vocal fold closure (Stevens, 1977); the more sinusoidal, less abrupt glottal closure involved in breathy phonation would amplify F0 and dampen the higher harmonics, which altogether produces a higher spectral tilt. Accordingly, some or all of these spectral tilt measures characterize breathy phonation in Xóö (Ladefoged, 1983; Ladefoged & Antoñanzas-Barroso, 1985), Mon (Thongkum, 1987a), Jalapa Mazatec (Blankenship, 2002; Garellek & Keating, 2010; Kirk et al., 1993), San Lucas Quiavini Zapotec (Gordon & Ladefoged, 2001), Xhosa (Jessen & Roux, 2002), Krathing Chong (Blankenship, 2002), Chanthaburi Khmer (Wayland & Jongman, 2003), Ssua/Kuai (Abramson et al., 2004), Javanese (Thurgood, 2004), Takhian Thong Chong (DiCanio, 2009), Santa Ana del Valle Zapotec (Esposito, 2010b), and Southern Yi (Kuang, 2011).

In addition to these more familiar spectral measures, the amplitude difference between the second and fourth harmonics (H2–H4) has been proposed as an auxiliary measure of breathiness. Kreiman et al. (2007) first introduced the measure as one of four measures that accounted for 76.6% of the variance in English voice quality as produced by speakers (most of whom had vocal pathology). This measure was later applied in Esposito’s (2010a) cross-linguistic study of phonologically contrastive phonation, finding that it distinguished breathy and modal vowels in Chong, Fuzhou, Mon, and San Lucas Quiavini, although not as well as other measures such as H1–H2. H2–H4 has also been associated with high pitch, e.g. falsetto in English and Mandarin (Bishop & Keating, 2010) and high tone in Southern Yi (Kuang, 2011). However, to the author’s knowledge, H2–H4 has not yet been demonstrated to be a reliable measure of phonological breathy phonation beyond Esposito’s (2010a) study.

2.2.2. Periodicity

While breathy voice is often associated with an increase in aperiodic noise, especially at higher frequencies, the complexities of the various established noise and periodicity measures tend to obscure this generalization. Measures of noise and periodicity proposed in the contrastive breathiness literature include cepstral peak prominence (CPP)—defined as a measure of peak harmonic amplitude normalized for overall amplitude as introduced in Hillenbrand et al. (1994)—and harmonic-to-noise ratio (HNR) as measured in de Krom (1993). Both of these measures are predicted to be lower in breathy phonation due to the added noise of increased airflow; accordingly, CPP was found to be lower in breathy phonation in Krathing Chong (Blankenship, 2002), Jalapa Mazatec (Blankenship, 2002; Esposito, 2010a; Garellek & Keating, 2010), and Southern Yi (Kuang, 2011), while HNR was

1 Hmong dialects are traditionally named by descriptors that often include colors. Andruski and Ratliff (2000) investigates the dialect traditionally called Bluemong or Greenmong (Hmong Njua), Esposito (2010c), Esposito and Khan (2010, 2012), and Khan and Esposito (2011) investigate White Hmong (Hmong Daw).

(footnote continued)

Huffman (1987) collapsed speakers of both of these dialects into one group, as explained in Huffman (1985, p. 6).
found to be lower in breathy or lax phonation in Ju’hoansi (Miller, 2007) and Javanese (Wayland, Gargash, & Jongman, 1994) but not in Chanthaburi Khmer (Wayland & Jongman, 2003). Another measure established in Hillenbrand et al. (1994) is Pearson r at autocorrelation peak (RPK), but this measure has not been used in studies of linguistically contrastive breathiness, presumably because it was shown to largely replicate the results of the CPP measure with less reliability due to frequent errors and increased sensitivity to lower-frequency energy; consequently, RPK is not explored in the current study.

2.2.3. Other acoustic measures

Additional acoustic measures, including intensity, duration, pitch, the frequency of the first formant (F1), and the effects of tracheal coupling are less reliable in distinguishing linguistic voice quality categories in a consistent way. Overall acoustic intensity, for example, which is typically measured as root-mean-squared (RMS) energy, is often cited in voice quality studies; however, different languages yield conflicting results. While RMS energy was found to be lower for lax voice in Kui/Suai and Chong (Thongkum, 1987b), it was significantly higher in the breathy vowels of Chanthaburi Khmer (Wayland & Jongman, 2003).

Similarly, breathiness is associated with an increase in vowel duration in Kedang (Samely, 1991), Jalapa Mazatec (Kirkt et al., 1993), Chanthaburi Khmer (Wayland & Jongman, 2003), Khmu’ Rawk (Abramson, Nye, & Luangthongkum, 2007), and in checked syllables in Mon (Thongkum, 1987a), but not in White and Green (H)mong (Huffman, 1987), San Lucas Quiavini Zapotec (Gordon & Ladefoged, 2001), Suiui/Kuai (Abramson et al., 2004), or non-checked syllables in Mon (Thongkum, 1987a).

As phonation and pitch are both primarily manipulated by many of the mechanisms within the larynx, systematic changes in f0 are often seen in non-modal phonation crosslinguistically. Most typically, f0 is lowered during breathy vowels (Laver, 1980) in Mon (Thongkum, 1987a), Nyah Kur (Thongkum, 1987b), Kui/Suai (Thongkum, 1987b), Western A-Hmao (Johnson, 1999), and Khmu’ Rawk (Abramson et al., 2007), and accompanies low tone in lexical tone languages such as Green Mong (Andruski & Ratliff, 2000). However, there are exceptions to this general tendency, with languages like Jalapa Mazatec showing no effect of phonation on f0 (Garellek & Keating, 2010), and even languages like Chanthaburi Khmer exhibiting higher f0 on breathy vowels (Wayland & Jongman, 2003). In fact, Madliessen and Hess (1987) document the inconsistent relation between larynx phonation and f0 in five minority languages of China: while Jinchao, Yi, and Lahu exhibit f0 lowering during lax phonation, Wa and Lisu show no such effect.

The frequency of the first formant (F1) has been found to be lower in breathy vowels cross-linguistically; lower F1 indicates an acoustically higher vowel. This has been found in Chong (Thongkum, 1987b), Kedang (Samely, 1991), and several Nilotic languages (Denning, 1989), as well as in vowels following weak, non-consonant contrastive breathiness (often called “slack voice”) in Shanghainese (Ren, 1992), Xhosa (Jessen & Roux, 2002), and the non-high vowels of Javanese (Thurgood, 2004). However, F1 shows no consistent association with breathy phonation in some Southeast Asian languages such as Mon (Thongkum, 1987a), Nyah Kur (Thongkum, 1987b), Kui/Suai (Thongkum, 1987b), Green Mong (Andruski & Ratliff, 2000), or Khmu’ Rawk (Abramson et al., 2007), or in Jalapa Mazatec (Garellek & Keating, 2010). Of course, there are many difficulties inherent in measuring formant frequencies—amplitudes can be weakened in high rounded vowels, surrounding consonants introduce formant transitions, and nasalization introduces nasal formants and antiformants—and thus it is also quite possible that further investigation will reveal a clearer picture of the effect of phonation on vowel quality.

Due to the acoustic damping effects of the tracheal coupling associated with unimpeded airflow through the glottis (Fant, 1972), a wider first formant bandwidth (increased B1) is also associated with breathiness, and has been shown to be a reliable indicator of the phonation type in Southern Yi (Kuang, 2011). Wider F1 bandwidth can also be inferred by measuring H1–A1 (Hanson, 1997, p. 471); a larger H1–A1 in Chanthaburi Khmer breathy vowels was taken to be indicative of damping (Wayland & Jongman, 2003).3

Measures of cycle-to-cycle regularity, including jitter (a measure of period consistency across cycles, Lieberman, 1963) and shimmer (a measure of amplitude consistency across cycles, Horii, 1980), primarily distinguish tense and creaky phonation from other voice qualities, and are not considered reliable unless performed on purely monophthongal vowels produced in isolation and with sustained pitch (Andruski & Ratliff, 2000, p. 55; Horii, 1982). For these two reasons, they are poor indicators of breathiness in naturalistic speech, and are consequently not explored in the current study.

2.2.4. Electroglottographic measures

Electroglottography is a non-invasive technique for investigating the articulatory properties of the glottis. This involves sending an electrical signal between two electrodes placed on either side of the subject’s larynx, using a collar around the neck. This configuration produces a signal representing the degree of electrical conductance between the electrodes: higher conductance corresponds to greater vocal fold contact (as human tissue is a relatively good conductor of electricity) while lower conductance corresponds to lesser contact. In this way, degrees of greater and lesser contact due to different phonation types can be studied directly from the EGG signal; breathier phonations are predicted to have less contact than modal phonations, which are predicted to have less contact than creakier phonations.

Like acoustic studies of voice quality, electroglottographic studies can be characterized as investigations of either non-phonological or phonological uses of breathy phonation. Examples of the former type of study, which establish the connection between the electroglottographic signal and vocal fold movement, include Scherer, Drucker, and Titze (1988) and Baken and Orlikoff (2000), among others. Examples of the latter type, which investigate how electroglottographic analysis can distinguish linguistic phonation types, include Guion, Post, and Payne’s (2004) study of Maa, Mazaudon and Michaud’s (2008) study of Tamang (whispey voice), DiCanio’s (2009) study of Tahkian Thong Chong, Esposito’s (2010c) study of White Hmong, Kuang’s (2011) study of Southern Yi (lax voice), and Esposito and Khan’s (2010, in press) comparison of Gujarati and White Hmong. These studies have all found that breathier phonation types involve a smaller Contact Quotient (also known as closing quotient, closed quotient, or CQ), the relative portion of time that the glottis is more closed during each pulse. (See Henrich, d’Alessandro, Doval, & Castellengo, 2004; Herbst, 2005; Herbst & Tenström, 2006 for discussions on how to measure CQ.) These results suggest a more
open glottis in breathier phonations. In addition, Esposito (2010c), Esposito and Khan (2010, 2012), and Kuang (2011) found that breathier phonation types in White Hmong and Southern Yi involve a significantly higher value in a measure known as Derivative-EGG Closure Peak Amplitude (DECPA), measured as the peak positive value in the first derivative of the EGG signal (Michaud, 2004; Vü-Ngò et al., 2005); this suggests a faster speed of vocal fold closing in those voice qualities. DECPA is also known as Peak Increase in Contact (PIC) in Keating et al. (2010).

2.3. Contrastive breathy voice in Gujarati

2.3.1. Background

Like most Indic languages, Gujarati (Indo-European; western India; 46 million: Lewis, 2009) distinguishes two voiced consonant types (i.e. voiced unaspirated vs. voiced aspirated) in addition to two voiceless types (i.e. voiceless unaspirated vs. voiceless aspirated). The former two distinguish modal voice and breathy voice (e.g. [bar] ‘twelve’ vs. [b’ar] ‘burden’, respectively. Less common in Indic languages is the Gujarati contrast in modal [i e a o u ʌ] and breathy/“murmured” [i_e_a_o_u ʌ] vowels (e.g. [bar] ‘twelve’ vs. [b’a] ‘outside’).6 While a handful of examples of breathier vowels are believed to have been derived independently (e.g. [kərə] ‘wall’, [nən] ‘small’, see Cardona & Suthar, 2003, p. 666; Masica, 1993, p. 147; Mistry, 1997, p. 668), the vast majority occur as a result of various processes involving sequences of modal vowels and breathy consonants (Cardona, 1965, pp. 29–30; 50; Cardona & Suthar, 2003, pp. 655–666; Dave, 1967, pp. 1–2; Fischer-Jørgensen, 1967, p. 73; Masica, 1993, p. 120; Mistry, 1997, pp. 666–669; Pandit, 1957, pp. 169–170).7 The four most stable breathy vowels [i_e_a_o_u ʌ] primarily emerged historically from the fusion of sequences of the type [iəu]; [iəa] ‘sister’ from historical [iəı].8 (Breathy diphthongs [iə] also arise from this source, specifically from sequences of [iəıı], respectively.) A second source of breathy vowels is the result of another historical sequence of vowels and an intervening breathy consonant, [iəu]; the sequences [iəa] ‘sister’ are typically produced as [iəa] in modern Gujarati dialects, but are subject to more variation, e.g. [iəa] ‘small’. In very casual speech, two vowel qualities are subject to more variation, e.g. [iəa] ‘small’, see Cardona & Suthar, 2003, p. 666; Masica, 1993, p. 147; Mistry, 1997, p. 668), the vast majority occur as a result of various processes involving sequences of modal vowels and breathy consonants (Cardona, 1965, pp. 29–30; 50; Cardona & Suthar, 2003, pp. 655–666; Dave, 1967, pp. 1–2; Fischer-Jørgensen, 1967, pp. 73; Masica, 1993, p. 120; Mistry, 1997, pp. 666–669; Pandit, 1957, pp. 169–170).7 The four most stable breathy vowels [i_e_a_o_u ʌ] primarily emerged historically from the fusion of sequences of the type [iəu]; [iəa] ‘sister’ from historical [iəı].8 (Breathy diphthongs [iə] also arise from this source, specifically from sequences of [iəıı], respectively.) A second source of breathy vowels is the result of another historical sequence of vowels and an intervening breathy consonant, [iəu]; the sequences [iəa] ‘sister’ are typically produced as [iəa] in modern Gujarati dialects, but are subject to more variation, e.g. [iəa] ‘small’. In very casual speech, two vowel qualities are subject to more variation, e.g. [iəa] ‘small’.

6 Outside Gujarati, the breathy vs. modal contrast across both consonants and vowels is seen only in Khoisan (Khoesan) languages (Traill, 1985) and White Hmong (Esposito, 2010c); see Esposito and Khan (2010, 2012) and Khan and Esposito (2011) for an analysis of the acoustic and EGG properties of breathy-voiced aspiration vs. breathy vowels in Gujarati and White Hmong.

7 The two types of breathy segments (i.e. breathy-aspirated consonants and breathy vowels) do not cooccur in the same syllable (Pandit, 1957, p. 169), largely due to a cooccurrence restriction in pre-modern Indic languages (Grasmann’s Law; see Whitney, 1885; Wackernagel, 1896) and a low number of borrowed or newly-coined words with breathy consonants in the modern lexicon.

8 Pandit (1957) analyzes breathy vowels as underlying sequences of a modal vowel and [h], e.g. [bahr] ‘outside’, a phonemic representation adopted by most subsequent studies.

With the exception of a handful of words that show no orthographic representation of breathiness, e.g. [b`a] ‘outside’, [k`a] ‘when’ (Cardona, 1965, p. 57), most instances of breathy vowels are still written in Gujarati orthography using sequences of vowels and intervocalic [j] or [h]. Thus, speakers sometimes read words as they are spelled instead of producing a single breathy vowel (Cardona & Suthar, 2003, pp. 665–666; Masica, 1993, p. 120; Turner, 1921, p. 529), e.g. occasionally pronouncing [p`el] ‘first (neut.)’ as [pa`el] or [pa`el] due to the spelling [p`e] ‘first (neut.)’ and [p`e] ‘when’ (Cardona, 1965, p. 57). Unsurprisingly, this pronunciation is most common in read speech and more formal registers, and was identified as a problematic factor in the recording of read speech for Dave’s (1967, p. 4) formant analysis. Furthermore, because the production of breathy vowels from the sources [Viə], [#iV], and [VCV] is heavily dependent on a casual register and fast rate, these words are the most likely to be produced in a spelling pronunciation when in a formal, laboratory setting. Moreover, in some sociolinguistic registers of particular dialects, breathy vowels can be produced as monophthongs, but with modal phonation, e.g. [b`a] for [b`a] ‘deafness’ (Cardona & Suthar, 2003, p. 666; Dave, 1967, p. 2); this has been noted as a marker of an “educated” speech style in Pandit (1957, p. 170); Nair (1979, p. 22), and Masica (1993, p. 120). For additional references on the historical and phonological perspective of breathy vowels in Gujarati, see Pandit (1969, p. 117), Dave (1977), and Vyas (1977, pp. 74–76).

2.3.2. Acoustic studies

Most of the established knowledge of the phonetic realization of the Gujarati phonation contrast comes from four acoustic studies, which have in many ways shaped our general understanding of both the acoustics and the perception of linguistic voice quality cross-linguistically. Pandit (1957) first characterized breathy vowels in Gujarati as involving “voiced breath, low pitched (p. 169)” based on his native intuition, and “random distribution of energy, more noticeable at higher frequencies (p. 172),” using kymographic evidence. Fischer-Jørgensen (1967) quantified Pandit’s findings, determining that lower f0 (particularly at the vowel onset), lower RMS energy, and the occasional presence of aspiration noise (assessed visually) were all moderately reliable cues to breathy vowels; however, she found that comparing the relative amplitude of the first harmonic (H1) with that of the second harmonic (H2) and with that of the three formants A1, A2, and A4 was a far more reliable measure of breathiness. Fischer-Jørgensen concluded that indeed, breathy vowels have a steeper spectral balance (i.e. higher H1–H2) and a steeper spectral tilt (i.e. higher H1–A1, H2–A2, H1–A4), and that only these spectral measures—not the measures of pitch, intensity, or aspiration noise—were found to be reliable indicators of breathiness across tokens and speakers. Like Fischer-Jørgensen, Dave (1967) also found that breathy vowels may be associated with lower f0, but the effect was small, and restricted to the words [i j]; he also showed that breathy vowels are slightly more open than their corresponding modal vowels, and involve a reduction in energy in the higher frequencies, especially around F4 (p. 29). Later, Bickley (1982) identified a high H1–H2 as a strong characteristic of breathy vowels produced by four speakers,
reconfirming Fischer-Jørgensen's conclusions; she did not report other acoustic findings. Bickley also used inverse filtering to reveal their more sinusoidal glottal waveform. Thus, the general consensus from these four early acoustic studies of Gujarati is that breathy voicing can be characterized most reliably by a higher H1–H2, but also by a lower f0, higher H1–A1, H1–A2, and H1–A4, lower RMS energy, possibly lower vowel height, and occasional aspiration noise. Later acoustic studies of Gujarati breathy vowels include Khan and Thatte (2009) and Khan (2009, 2010), which are earlier versions of the current study, and Keating et al. (2010), Esposito and Khan (2010, 2012), and Khan and Esposito (2011), which are comparative studies of Gujarati and White Hmong; due to their close relation to the current work, their findings on Gujarati are not reviewed here in detail.

2.3.4. Articulatory studies
In comparison to the fair amount of attention given to the acoustics and perception of Gujarati breathy vowels, their articulatory properties have thus far not been examined in as much detail. To my knowledge, the few studies of Gujarati phonation that incorporate an articulatory component all examine data from no more than three subjects each. Examining breathy vowels produced by a subset of her subject pool, Fischer-Jørgensen (1967) reported a shorter closed phase and what she interpreted as possibly a wider glottis in an EGG analysis of two speakers, and greater airflow in an aerodynamic analysis of three speakers. In Modi (1987), tomographic data served as the empirical base for a proposal to split Gujarati into “murmur” dialects and “tight phonation” dialects. Breathy phonation in the “murmur” dialects—which include Standard Gujarati—was shown to be produced with a lowered and widened glottis in the word [kæːvɔt] ‘proverb’ ([kkhʌvt] in her transcription). However, the majority of Modi’s (1987) study focused on refuting theoretical issues raised in previous studies, and the articulatory data were not further analyzed. With such limited views into the articulation of Gujarati breathy vowels, it is clear that there is still much to be studied in terms of what is physiologically occurring in the vocal tract during their production.

2.4. Motivation for the current study
Considering the wide array of languages (including Gujarati) whose phonation contrasts have been shown in the literature to be reliably distinguished by H1–H2, and considering Gujarati speakers’ sensitivity to H1–H2 when listening to other languages, it is safe to say that H1–H2 should be a reliable measurement distinguishing modal and breathy vowels in Gujarati. However, additional questions remain, due to important issues left unanswered in previous work.

The first issue is that, with the use of modern automated technology to examine a larger corpus of data, it is now possible to investigate many more acoustic and EGG measures mentioned in previous studies of other languages to determine which of them can also reliably distinguish the phonation categories of Gujarati. Second, spectral measures such as H1–H2 are no longer used without various adjustments to correct for the effects of surrounding formant frequencies and bandwidths (Hanson, 1995), but none of the early studies of Gujarati phonation accounted for these effects. Especially when comparing across vowel qualities, such corrections are imperative. Third, previous studies measured acoustic properties on the averages of entire vowel durations, thus overlooking the possibility that phonation is dynamic and that certain cues may be localized to certain portions of the vowel (Blankenship, 2002; Gordon & Ladefoged, 2001, pp. 11–13). Fourth, articulatory investigations of Gujarati breathy voice (including EGG studies) are particularly limited, leaving much to be explored.

Additionally, there is the issue of data quantity and quality; previous acoustic studies examined either a small number of speakers (e.g., Bickley, 1982; Dave, 1967) or different sets of data for different speakers (e.g., Fischer-Jørgensen, 1967), thus not carefully controlling for interspeaker variation. Furthermore, such studies investigated only words in isolation and in predetermined phrases produced in a laboratory setting despite the established caveats regarding the effects of spelling pronunciations and of the “educated” speech register; thus additional work is still needed to confirm the validity of previous work in a wider context.

Thus, the current study seeks to answer the following five questions, using a stricter methodology described in the subsequent section:

1. **Acoustics:** In addition to H1–H2, what acoustic measures reliably distinguish Gujarati phonation types?
2. Electroglottography: Can electroglottographic measures reliably distinguish these phonation types?

3. Localization: Are the effects of certain cues localized to particular points in a vowel’s duration?

4. Vowel quality: Are the acoustic cues for breathiness affected by vowel quality?

5. Articulation: What can the acoustic and electroglottographic results tell us about how Gujarati speakers produce these voice qualities?

3. Methods

3.1. Subjects

Ten native Gujarati-speaking subjects (3 M, 7 F) participated in the current study; all were college-educated and fully literate in the language. None had any prior academic background in linguistics. At the time of recording, all but two subjects were in their 20s or 30s and had spent the majority of their lives in India, having only recently (< 1 year prior) moved to the US at the time of recording. Of the remaining two speakers, one was in her 50s and had lived in the US for 26 years, and the other was in her 20s and had lived in the US for three years. All speakers are also fluent in English as well as various Indian languages, most commonly Hindi and Marathi.

3.2. Controlling for sociolinguistic effects

Because all subjects were college-educated adults and because of the formal atmosphere inherent in laboratory recordings, the choices of stimuli and task had to be controlled to avoid triggering both the neutralization of breathiness as seen in “educated” speech (e.g. [banu] for [bnu] ‘excuse’; see Masica, 1993, p. 120; Pandit, 1957, p. 170) and the over-enunciating disyllabic productions as seen in slow, formal, read speech (e.g. [baːnau] for [bnu] ‘excuse’) as in Dave (1967, p. 4). In this way, the current study departs from previous studies in controlling for these sociolinguistic effects in three ways: highly academic or scientific words were excluded to avoid the “educated” speech style, a special recording procedure was used to minimize the effect of orthographic representation (see Section 3.5), and words of the relatively unstable [V6a], [#/iV], and [VCV] sources were not examined; only those from the most stable source (i.e. [#/iV] → [V]) were used. Two native speaker consultants, who were aware of the purpose of the study and therefore did not serve as experimental subjects, were especially helpful in stimulus selection and task development.

3.3. Stimuli

All 26 stimulus items used in the current study had either target modal vowels or target breathy vowels of the most stable source type (i.e. [#/iV] → [V]), in words predicted by native speaker consultants to be familiar to the average speaker and not overly academic or literary. Stimuli were selected with the use of a Gujarati–English dictionary (Suthar, 2003). Some are members of minimal pairs (e.g. [bhar] ‘twelve’ vs. [bhr] ‘outside’), while others are members of near-minimal pairs (e.g. [keu] ‘of what kind’ vs. [keu] ‘to say’), due to constraints on the Gujarati lexicon. Because of the potential long-distance effects of breathy phonation (Modi, 1987, pp. 46–50), words with target modal vowels but breathy phonation in other segments were excluded. The full list of stimuli can be found in the appendix.

3.4. Recording

Recordings were made in 2008–2009 in a sound-proof booth in the phonetics laboratory at UCLA. In each recording session, both subject and investigator were seated in front of a desktop computer running the software program PCQuirerX. The subject both held the microphone and wore an EGG electrode collar around his or her neck. The microphone was attached to an external pre-amplifier, which was attached to the computer by a USB cable. The electrodes were attached to the EGG, which was in turn attached to the same external box to which the microphone input was attached. The visual readings of the audio and EGG signals were visible to both investigator and subject in the PCQuirerX display and the EGG box itself, so the subject could adjust the volume of his or her voice, and so the investigator could adjust the positioning of the EGG electrodes, if needed.

3.5. Task

Due to concerns described above, a task had to be devised that would minimize exposure to the orthographic representation of the target word and maximize speech rate, with the intention of inducing more casual speech. Thus, the investigator sat to the right of the subject, and briefly (~ 2 s) displayed the first flash card—an example word, not recorded—with both the Gujarati word [gʊ] [kurʊ] and its English translation ‘dog’ handwritten on it. The investigator explained that the subject should immediately think of a short sentence beginning with the word, such as [gʊ] [kurʊ bʊːɡi gʊ] ‘the dog ran away,’ and say it out loud into the microphone as many times as possible during the timed recording. Once the subject understood the task, the investigator began displaying the flash cards containing target stimuli. For each word, the investigator created a recording in PCQuirerX with a fixed duration of 10 s, and the subject repeated the sentence he or she thought up as many times as could be accommodated in that time. Depending on the speaker’s typical speech rate and on the length of the sentence created by the speaker, each recording typically contained between four and six fluent sentences. Between recordings, the investigator frequently asked the subject about the translations of some sentences to keep the subject focused on meaning rather than on spelling.

3.6. Annotation

To prepare each recording for analysis, a Praat text grid (Boersma & Weenink, 2010) was created for each audio file, with one interval tier in which the target vowel of each stimulus word was later segmented and transcribed, as shown in Figs. 1 and 2. Because each recording’s audio file and EGG file were of the exact same length (due to the fixed 10-s recording window), the segment boundaries in the text grid could be accurately aligned.

12 Many of the stimuli selected for the current study were used in a pilot study conducted by Victoria Thatte. All but one stimulus was taken from Suthar (2003). The remaining stimulus (i.e. [kʰɜ]) was taken from Ladefoged and Maddieson (1996).

13 Due to the peculiarities of Gujarati historical and dialectal phonology, low-mid modal vowels [ɛː ɔː] contrast with the high-mid modal vowels [e o] in word-initial syllables (e.g. [məko] ‘favorable opportunity’ vs. [məko] ‘spacious’, ‘open’), but only in certain dialects; many other dialects have only high-mid modal vowels [e o] (Cardona & Suthar, 2003; Firth, 1957). All dialects with contrastive breathiness have low-mid breathy vowels [ɛː ɔː]. Thus, for many speakers, the mid-vowel (near-)minimal pairs in fact contrast high-mid modal vowels and low-mid breathy vowels (e.g. [mel] ‘filth’ vs. [mɛl] ‘palace’) instead of standard [mel] ‘filth’ vs. [mɛl] ‘palace’.
with the simultaneously-recorded EGG signal to identify the target vowels for the semi-automated acoustic and EGG analysis described below.

3.7. Analysis

The audio data was then analyzed using VoiceSauce (Shue, Keating, & Vicenik, 2009), a free software program developed to semi-automatically make multiple acoustic measures for each annotated input file. Each acoustic measure was calculated at every millisecond of target vowel duration, and then averaged within the nine timepoints of the vowel. The acoustic parameters measured for the current study include Amplitude Differences of various Harmonics and Formants (i.e. H1–H2, H2–H4, H1–A1, H1–A2, H1–A3) corrected for the effects of surrounding formant frequencies and bandwidths (Hanson, 1995) using the algorithm developed in Iseli et al. (2007). Fundamental Frequency (f0) as calculated by the STRAIGHT algorithm of Kawahara, de Cheveigne, and Patterson (1998), and three measures that examine a variable window of analysis equal to five pitch pulses: Root Mean Square (RMS) Energy (a measure of overall intensity), Cepstral Peak Prominence (CPP) as defined in Hillenbrand et al. (1994), and Harmonic-to-Noise Ratio (HNR) as calculated in de Krom (1993), focusing on four regions of the spectrum: 0–500 Hz, 0–1500 Hz, 0–2500 Hz, and 0–3500 Hz.

In some cases, manual intervention was needed during the acoustic analysis. The formant tracking algorithms in VoiceSauce were at times unable to properly identify F1; this was most common when F1 was either weakened due to aspiration noise or difficult to distinguish from a strong H1, both properties being typical of breathy voice. In these cases, formant listing from Praat (Boersma & Weenink, 2010) were manually fed into VoiceSauce to recalculate the amplitudes of those formants and thus accurately correct the spectral measures.

The EGG signal was analyzed using EggWorks (Tehrani, 2009), a free software program developed to work with VoiceSauce, automatically making multiple EGG measures for each annotated input file. As with the acoustic measures, each EGG measure was calculated at every millisecond of target vowel duration, and then averaged within the nine timepoints of the vowel. There were two EGG parameters measured for the current study, the first being Contact Quotient (CQ): the duration of the closed phase relative to the open phase of each glottal cycle, measured here using a hybrid method with the maximum value of the first derivative of each cycle of the EGG signal marking the onset of the closed phase and a 25% threshold marking its offset. Hybrid methods of calculating CQ—roughly, those in which the onset and offset of the closed phase are determined using different criteria—have been used in electroglottography since the 1980s. See Davies, Lindsey, Fuller, and Fourcia (1986), Orlikoff (1991), and Howard (1995) for a review of some of the first hybrid methods proposed. Use of the first derivative of the EGG to determine the onset of the closed phase has been supported by multiple imaging studies of glottal closure,
4. Results

As can be observed in pairs such as the one presented in Fig. 3, breathy vowels are often easily distinguishable through qualitative spectrographic analysis from their modal counterparts. The most easily distinguishable breathy vowels have visibly weakened formant structure and increased aperiodic noise, especially above 2000 Hz. However, many pairs collected in the current study involved a distinction that could not be identified so clearly.

As a preliminary step in the quantitative analysis, all acoustic and EGG measurements from the multiple recordings of the same target word produced by the same speaker were averaged within each of the nine timepoints of equal duration, before undergoing statistical analysis. The results of comparing modal and breathy vowels along the various acoustic and EGG parameters are summarized in Table 1. The statistical results are drawn from two-way repeated measures ANOVAs with phonation and vowel quality as the two independent variables and subject as the random sampling variable. Data in the “main effect of phonation” column indicate whether there was a significant ($p < 0.01$) main effect of breathiness on the measure at any timepoint within the vowel’s duration. If the measure also significantly ($p < 0.01$) distinguishes voice quality categories averaging across the entire vowel duration, two asterisks appear in the “main effect of phonation” column. Most often, a given measure significantly distinguished vowel quality categories at some but not all timepoints. The results of comparing modal and breathy vowels along the various acoustic and EGG parameters are summarized in Table 1. The statistical results are drawn from two-way repeated measures ANOVAs with phonation and vowel quality as the two independent variables and subject as the random sampling variable. Data in the “main effect of phonation” column indicate whether there was a significant ($p < 0.01$) main effect of breathiness on the measure at any timepoint within the vowel’s duration. If the measure also significantly ($p < 0.01$) distinguishes voice quality categories averaging across the entire vowel duration, two asterisks appear in the “main effect of phonation” column. Most often, a given measure significantly distinguished vowel quality categories at some but not all timepoints. The results of comparing modal and breathy vowels along the various acoustic and EGG parameters are summarized in Table 1. The statistical results are drawn from two-way repeated measures ANOVAs with phonation and vowel quality as the two independent variables and subject as the random sampling variable. Data in the “main effect of phonation” column indicate whether there was a significant ($p < 0.01$) main effect of breathiness on the measure at any timepoint within the vowel’s duration. If the measure also significantly ($p < 0.01$) distinguishes voice quality categories averaging across the entire vowel duration, two asterisks appear in the “main effect of phonation” column. Most often, a given measure significantly distinguished vowel quality categories at some but not all timepoints.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Main effect of phonation</th>
<th>Localization</th>
<th>Interaction with vowel quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1–H2</td>
<td>V is higher**</td>
<td>points 1, 4–7</td>
<td>point 4</td>
</tr>
<tr>
<td>H2–H4</td>
<td>V is higher**</td>
<td>points 4–6</td>
<td>none</td>
</tr>
<tr>
<td>H1–A1</td>
<td>V is higher**</td>
<td>all points</td>
<td>point 8</td>
</tr>
<tr>
<td>H1–A2</td>
<td>V is higher**</td>
<td>all points</td>
<td>none</td>
</tr>
<tr>
<td>H1–A3</td>
<td>V is higher**</td>
<td>points 1, 3–9</td>
<td>none</td>
</tr>
<tr>
<td>Periodicity measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNR: 0–500 Hz</td>
<td>V is lower</td>
<td>point 2</td>
<td>none</td>
</tr>
<tr>
<td>HNR: 0–1500 Hz</td>
<td>V is lower</td>
<td>points 2, 5–6</td>
<td>point 1</td>
</tr>
<tr>
<td>HNR: 0–2500 Hz</td>
<td>V is lower</td>
<td>points 2, 5–7</td>
<td>points 1, 9</td>
</tr>
<tr>
<td>HNR: 0–3500 Hz</td>
<td>V is lower</td>
<td>points 4–6</td>
<td>none</td>
</tr>
<tr>
<td>CPP</td>
<td>V is lower</td>
<td>points 4–6</td>
<td>points 3–5</td>
</tr>
<tr>
<td>Other acoustic measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS energy</td>
<td>none</td>
<td>n/a</td>
<td>none</td>
</tr>
<tr>
<td>f_0</td>
<td>none</td>
<td>n/a</td>
<td>points 4–9</td>
</tr>
<tr>
<td>EGG measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQ</td>
<td>V is lower**</td>
<td>points 2–9</td>
<td>none</td>
</tr>
<tr>
<td>DECPA</td>
<td>none</td>
<td>n/a</td>
<td>none</td>
</tr>
</tbody>
</table>

Table 1 Results of each acoustic and electroglottographic measure’s capacity to distinguish breathy and modal vowels.

Fig. 3. Praat (Boersma & Weenink 2010) images of wide-band spectrograms of the words [fɛɾi] ‘sugarcane’ (top, initial syllable only) and [ɛɾi] ‘city’ (bottom) produced by Speaker 9 (female, 30, from Mumbai), showing the contrast of [ɛ] vs. [ɨ].
timepoints; timepoints with significant \(p < 0.01 \) main effects are listed under the “localization” column. Timepoints exhibiting significant \(p < 0.01 \) interactions of phonation and vowel quality are listed in the rightmost column.

4.1. Acoustic results

The results confirm that several acoustic cues, including some not mentioned in previous studies, reliably contrast modal and breathy vowels in Gujarati; many of these cues are localized to specific parts of the vowel, and several also interact with vowel quality. Results of spectral measures are presented in Section 4.1.1, results of periodicity measures in Section 4.1.2, and results of other acoustic measures in Section 4.1.3.

4.1.1. Spectral measures

As expected, there were significant effects of phonation on four familiar spectral measures, averaging across all nine timepoints of the vowel: H1–H2 \(F[1, 196] = 23.37; p < 0.01 \), H1–A1 \(F[1, 196] = 48.92; p < 0.001 \), H1–A2 \(F[1, 196] = 50.09; p < 0.001 \), and H1–A3 \(F[1, 196] = 23.44; p < 0.01 \). A similar effect was seen on H2–H4 \(F[1, 196] = 13.03; p < 0.01 \), which had not been previously studied in Gujarati. As expected, breathy vowels exhibited the higher value in all five spectral measures, shown for four of these measures in Fig. 4. Higher values indicate that the lowest-frequency harmonic has a high amplitude relative to the rest of the spectrum, a common property of breathier phonations cross-linguistically. Because the current study explores corrected spectral measures to control for the effects of formant frequencies and bandwidths on the different vowels examined, it was possible to increase the number of measures investigated beyond those of these earlier studies and also avoid the problems identified in Fischer-Jørgensen (1967), where some spectral tilt measures (in particular, H1–A1, H1–A2, H1–A3) were unreliable indicators of breathiness on certain vowels. There was no significant interaction between any spectral measures and vowel quality averaging across the entire vowel duration.14

The three measures of spectral tilt (i.e. H1–A1, H1–A2, H1–A3) not only showed a significant increase in breathy vowels when averaging across the nine timepoints, they also showed significant increases at each individual timepoint, with one exception: H1–A3 was higher during timepoint 2 of breathy vowels only at a weaker threshold of significance \(p < 0.05 \). The two harmonic measures (i.e. H1–H2, H2–H4), however, showed a localization effect: while both were significantly higher in breathy vowels than in modal vowels during the mid-region (i.e. timepoints 4–6), their difference at other timepoints was significant only at a weaker threshold of significance \(p < 0.05 \). Because of this difference in statistical significance, the timecourse of breathy vowels was investigated: in Fig. 5, the timecourses for H1–H2, H2–H4, H1–A1, and H1–A3 in breathy and modal vowels are shown. Note that breathiness increases in the mid-region of breathy vowels across all spectral measures, more notably in some measures than others. This localization may seem somewhat trivial in spectral measures, as the overall means are significant to begin with, but it becomes much more important in measures of periodicity.

4.1.2. Periodicity measures

Averaging across the entire vowel, there was no significant effect of phonation on the HNR within the 0–500 Hz range \(F[1, 196] = 0.01; p = 0.93 \). There was a marginally significant effect of phonation on the HNR of the 0–1500 Hz range \(F[1, 196] = 5.79; p = 0.05 \), the 0–2500 Hz range \(F[1, 196] = 9.51; p = 0.02 \), and the 0–3500 Hz range \(F[1, 196] = 9.97; p = 0.02 \), as well as on CPP \(F[1, 196] = 8.80; p = 0.02 \), with breathy vowels consistently exhibiting lower (less periodic) values. These last two measures are shown in Fig. 6, although they are not listed in Table 1, which reports only the effects found to be significant at \(p < 0.01 \).

These results seem to suggest that the periodicity measures used are not reliable indicators of breathiness. This finding stands in contrast to results of early studies (e.g. Fischer-Jørgensen, 1967), in which periodicity (measured qualitatively) was thought to be

\footnote{14 There were, however, isolated interactions at two timepoints: H1–A1 at timepoint 8 \(F[2, 196] = 6.53; p < 0.01 \) and H1–H2 at timepoint 4 \(F[2, 196] = 7.20; p < 0.01 \). Given the lack of a clear pattern in these two phonation–vowel quality interactions, they are not discussed in greater detail.}
a fairly good cue to breathiness, although secondary to spectral
measures such as H1–H2. Given this incongruity, the periodicity
results were run through further scrutiny: an examination of the
timecourse of periodicity values across the vowel’s duration reveals
that while breathy and modal vowels are not distinct at their onset
and offset, they are distinct at their midpoint, as shown in Fig. 7.

Indeed, focusing on the middle third of the vowel (i.e. timepoints
four, five, and six of nine) reveals statistically significant ($p < 0.01$
)differences between modal and breathy categories along the
four measures of periodicity that show marginally significant
($0.01 < p < 0.05$) results in measurements averaging across the
entire vowel. For example, at the fifth of nine timepoints, there
are significant effects of phonation on HNR of the 0–1500 Hz
$[F(1, 196)=17.78; p < 0.01]$, 0–2500 Hz $[F(1, 196)=24.00; p < 0.01]$, and
0–3500 Hz ranges $[F(1, 196)=25.23; p < 0.01]$, as well as CPP
$[F(1, 196)=50.80; p < 0.001]$. These last two measures are shown in
Fig. 8. In the same position, there was a marginally significant effect
of phonation on HNR of the 0–500 Hz range $[F(1, 196)=8.92; p=0.02]$. The midpoint of the vowel (here defined as timepoints 3,
4, and 5) is also the site of a significant interaction between
phonation and vowel quality on CPP, e.g. at timepoint 4 $[F(2, 196)=
12.216; p < 0.001]$: this is the area of widest differentiation between

Please cite this article as: Khan, S.D., The phonetics of contrastive phonation in Gujarati. Journal of Phonetics (2012), http://dx.doi.org/
10.1016/j.wocn.2012.07.001
the members of the pairs [a ɔ] and [o ɔ], while the front vowel pair [ɛ ɜ] shows no such exaggeration in differentiation.\(^{15}\)

4.1.3. Other acoustic measures

There was no significant effect of phonation on the mean RMS energy across the entire vowel \(F(1, 196) = 2.54; p = 0.15\), or at any particular timepoint. There was also no significant interaction with vowel quality. These results indicate that RMS energy is not a good measure of breathy phonation in Gujarati vowels produced in running speech. Similar to the RMS energy results, there was no significant effect of phonation on the mean f0 across the entire vowel \(F(1, 196) = 0.16; p = 0.70\), or at any particular timepoint. However, an unexpected pattern emerges when investigating each vowel quality separately: a significant interaction of phonation and vowel quality on mean f0 was found \(F(2, 196) = 8.79; p = 0.002\). While [ɛ] had a lower f0 value than its modal counterpart [e] (as expected, following the findings of Pandit, 1957; Fischer-Jørgensen, 1967 as well as predominant crosslinguistic patterns), breathy [a ɔ] had higher f0 values than their modal counterparts [a ɔ]. It is unclear why the front vowel pair [e ɛ] would work differently from the central and back vowel pairs [a ɔ] and [o ɔ]; this is particularly interesting considering it is indeed the front vowel pair [e ɛ] that is poorly differentiated in CPP, the only other measure involving a significant interaction between phonation and vowel quality across adjacent timepoints. This interaction between phonation and vowel quality on f0 does not appear to be related to the interactions seen in Javanese vowels following slack-voiced stops (Thurgood, 2004), in which higher and lower vowels behave differently with respect to their interaction with phonation on f0. Because this latter study describes distinctions in vowel height, it does not provide a clear prediction for interactions of vowel frontness/backness with phonation on f0.

4.2. Electroglottographic results

Shifting focus to the EGG results (Fig. 9), the findings reveal a significant effect of phonation on the mean CQ across the entire vowel \(F(1, 195) = 79.86; p < 0.001\), with no significant interaction with vowel quality. Breathy vowels consistently had a lower mean CQ, indicating the glottis is more open in these vowels relative to modal vowels; this is consistent with cross-linguistic findings. DECPA, on the other hand, was not significantly affected by phonation type \(F(1, 195) = 0.18; p = 0.68\), and there was no significant interaction between phonation and vowel quality, at any specific timepoint or across the entire vowel duration. (Note that unlike CQ values, DECPA values are arranged on an arbitrary scale of unspecified units.)

The lack of a clear connection between phonation type and DECPA in Gujarati is unlike the situation in languages such as White Hmong (Esposito, 2010; Esposito & Khan, 2010, 2012) and Southern Yi (Kuang, 2011), in which DECPA was found to be significantly higher [i.e. faster glottal closure] in breathier phonations. It may surprise the reader to know that DECPA was significantly higher in the breathier phonations of those languages, given that higher DECPA values reflect faster glottal closure while breathy phonations are traditionally thought of as having less abrupt glottal closure. As suggested in Keating et al. (2010, p. 93), the higher DECPA values are due to a principle of ‘the further, the faster’: as breathier phonation requires a greater degree of glottal opening, this can require the vocal folds to move more quickly between the (wider) open phase and closed phase. Esposito and Khan (2012) go on to suggest that as White Hmong is a lexical tone language, it is possible that this strategy of speeding up the transition is what makes it possible to lengthen the open phase (which allows for greater breathiness) without lengthening the entire pulse (thus maintaining the pitch). The same is presumably true for Southern Yi, another lexical tone language.

\(^{15}\) The only other significant interactions between periodicity measures and vowel quality are restricted to one timepoint each, instead of spanning multiple adjacent timepoints, and are thus not taken to be meaningful. There is a significant interaction between vowel quality and phonation on HNR in the 0–1500 Hz range at timepoint 1 \(F(2, 196) = 6.11; p < 0.01\) and on HNR in the 0–2500 Hz range at timepoints 1 \(F(2, 196) = 6.94; p < 0.01\) and 9 \(F(2, 196) = 6.85; p < 0.01\).
Although mean CQ values are significantly different across breathy and modal vowels, collapsing across timepoints, further investigation into their timecourse was conducted to see if there is any articulatory exaggeration at the voice source concentrated at the midpoint of breathy vowels to match the acoustic exaggeration in aperiodicity described above. As the graph in Fig. 10 illustrates, mean CQ values are indeed lowest (i.e. breathiest) around the third, fourth, and fifth of nine timepoints during breathy vowels, resembling the CPP effects seen during the fourth, fifth, and sixth timepoints and the HNR effects seen during the fifth and sixth timepoints. This behavior of exhibiting a significant difference between modal and breathy voice averaging across the entire vowel duration while also showing signs of exaggeration of the distinction in the mid-region strongly resembles that of the spectral measures, e.g. H2–H4. This region of lower CQ values indicates that the stronger breathiness seen at the vowel midpoint in the acoustic output is likely the result of an exaggerated articulation at the voice source, at least in terms of mean glottal opening. DECPA values, on the other hand, were not significantly different between breathy and modal vowels at any timepoint, although there was a non-significant exaggeration of the DECPA difference in the vowel’s mid-region.

5. Discussion and conclusion

The current study reveals that Gujarati breathy vowels can be distinguished from their modal counterparts along numerous spectral measures. Corroborating the findings of previous studies, the current results find that breathy vowels are characterized by a significantly higher H1–H2, H1–A1, and H1–A2 averaging across their entire duration. Furthermore, due to the correction algorithms implemented in the current study to control for the effects of formants, a more accurate investigation of the spectrum was possible, revealing that H1–A3 was also significantly higher in breathy vowels. These spectral properties of breathiness hold true independent of vowel quality. Lastly, a relatively obscure spectral measure of voice quality was also found to distinguish breathy from modal vowels: H2–H4. Although most previous studies investigating the significance of the H2–H4 measure find that it is most closely associated with high pitch—including high lexical tone in Southern Yi (Kuang, 2011) and falsetto in English and Mandarin (Bishop & Keating, 2010)—the current study finds that this measure is also a reliable indicator of breathy voice. This is particularly striking in light of the fact that breathy vowels were not significantly distinct from their modal counterparts in terms of f0 in the current study (i.e. they did not have the high pitch normally associated with a high H2–H4 value), and in fact they have been associated with slightly lower f0 in early studies of the language. It appears that, despite its usually overwhelming by other factors in running speech, e.g., the effects of pragmatics and information structure on the intonation. As the f0 contour in Gujarati is largely a reflex of the intonational (as opposed to tonal or segmental) structure, the fact that the spelling pronunciation of breathy vowels involves a disyllabic pronunciation instead of a monosyllabic pronunciation would presumably alter the metrical structure of the word to the point that pitch accent placement would be affected, modifying the pitch and intensity contours.

In addition to the discovery of a large inventory of acoustic cues of Gujarati breathy voice, another important contribution of the current study is the EGG component, which serves as the first major articulatory investigation of breathy phonation in Gujarati. The
EGG results determine that breathy vowels are characterized by a lower CQ throughout their duration than modal voice. This finding, combined with the spectral findings on H1–H2, strongly suggest that breathy voice in Gujarati is produced with a wider-than-modal glottis. Additionally, while the precise configuration of the glottis cannot be confirmed through acoustic and EGG measures alone, our current understanding of the H1–A1 results suggest that the arytenoids may be positioned in such a way to leave a gap for continuous airflow through the posterior region. What remains especially mysterious is the discrepancy regarding vocal fold closure; the current findings are not convergent in this regard. DECPA, considered the EGG measure of glottal speed, was not a reliable measure of breathiness, while the spectral measures considered the acoustic reflexes of the abruptness of vocal fold closure (i.e. H1–A2, H1–A3) showed statistically significant distinctions between breathy and modal vowels. It may be that DECPA is not a reliable indicator of vocal fold closure speed, or that the spectral measures are reflecting some other aspect of the glottal configuration. One limitation of EGG research, of course, is that while glottal impedance can be measured with a satisfactory degree of accuracy, one cannot isolate the precise location of the aperture (e.g. posterior, anterior). Visual observation of the pharynx and glottis will be necessary to measure glottal speed, as well as to confirm the exact configuration used to produce this voice quality. Given the wide variety of independently maneuverable mechanisms in the glottis, it is likely that more than one articulation is used within and across Gujarati speakers.

One notable strength of the current study is its methodology; unlike the scripted, purely laboratory-style speech recorded in previous studies, the current study examined more naturalistic running speech, finding that speakers produced consistent differences between contrastive voice quality categories even in this (relatively) more spontaneous speech style. By eliciting this speech style, the current study largely avoids the problems encountered in many previous studies of Gujarati, including effects of the “educated” speech register (neutralization of phonation contrasts to the modal category) and the read speech style (spelling pronunciation of breathy phonation as a sequence of modal vowels separated by /l/).

As the first major analysis of corrected acoustic measures and electroglottographic measures in Gujarati, the current study supports the claim that breathy voice in Gujarati is produced with a wider-than-modal glottis, allowing for continuous, unimpeded airflow during voicing. This is evidenced by a large inventory of acoustic and articulatory parameters along which breathiness are reliably measured in the language, largely independent of vowel quality. The study also finds that breathy voice in Gujarati takes on a dynamic realization, with the most extreme breathiness produced at the midpoint; this is where four noise measures are statistically-significant markers of the nonmodal phonation, and where many other measures showed an exaggerated of the phonation distinction. Of course, despite these new findings, the current study naturally has some limitations that will need to be explored more fully in future work; the most noticeable of which is lack of perceptual data. While previous perceptual studies of Gujarati agree that H1–H2 is the most salient cue for Gujarati listeners, even when other cues were made available, these earlier studies did not cover the range of acoustic parameters presented in the current study, did not use algorithms for correction of spectral amplitudes, and did not manipulate any acoustic parameters by time. Consequently, it would be worthwhile to revisit this issue given these new findings.

Acknowledgments

I would like to thank (in alphabetical order) Christina M. Esposito, Ramesh Goud, Ranjan Goud, Patricia Keating, Claire Moore-Cantwell, Henry Tehrani, and Victoria Thatte for their valuable input; the ten subjects of the production study for their time and patience; and Kenneth de Jong, Michael Jessen, and two anonymous reviewers for their suggestions and insight. The study was funded by the NSF, as part of a collaborative project entitled “Production and Perception of Linguistic Voice Quality” (Investigators: Patricia Keating, Abeer Alwan, Jody Kreiman, & Christina Esposito. NSF Grant BCS-0720304: beginning 2007), which covered reimbursements for subject participation and the hiring of a research assistant to help with labeling and processing sound files.

Appendix A

See Table A1.

Appendix B

See Table B1.

Appendix C

See Table C1.

Table A1

<table>
<thead>
<tr>
<th>Order</th>
<th>Orthography</th>
<th>Dictionary transcription</th>
<th>IPA</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>ḍaṅ</td>
<td>kan</td>
<td>kan</td>
<td>ear</td>
</tr>
<tr>
<td>15</td>
<td>ḍāṅ</td>
<td>(not listed)</td>
<td>lṅ</td>
<td>Krishna</td>
</tr>
<tr>
<td>10</td>
<td>bār</td>
<td>bar</td>
<td>bar</td>
<td>twelve</td>
</tr>
<tr>
<td>02</td>
<td>ḍā испыта</td>
<td>ḍāharga</td>
<td>ḍṛṛ</td>
<td>outside</td>
</tr>
<tr>
<td>42</td>
<td>bāṅ</td>
<td>bāṅ</td>
<td>bāṅ</td>
<td>arrow</td>
</tr>
<tr>
<td>18</td>
<td>ḍāḥa</td>
<td>ḍāhara</td>
<td>ḍṛṛ</td>
<td>excuse</td>
</tr>
<tr>
<td>28</td>
<td>ḍālik</td>
<td>malik</td>
<td>Ṉa</td>
<td>priest, god</td>
</tr>
<tr>
<td>14</td>
<td>ḍālīk</td>
<td>ma.līk</td>
<td>ma</td>
<td>priest, emperor</td>
</tr>
</tbody>
</table>

Table B1

<table>
<thead>
<tr>
<th>Order</th>
<th>Orthography</th>
<th>Dictionary transcription</th>
<th>IPA</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>kevū</td>
<td>kevū</td>
<td>kevū</td>
<td>of what kind</td>
</tr>
<tr>
<td>48</td>
<td>ḍo.ḥu</td>
<td>ḍo.ḥu</td>
<td>ḍo.ḥu</td>
<td>to say</td>
</tr>
<tr>
<td>01</td>
<td>ḍi</td>
<td>ḍi</td>
<td>ḍi</td>
<td>native, villager</td>
</tr>
<tr>
<td>44</td>
<td>ḍo.ḥot</td>
<td>ḍo.ḥot</td>
<td>ḍo.ḥot</td>
<td>apprehension</td>
</tr>
<tr>
<td>56</td>
<td>ḍu</td>
<td>ḍu</td>
<td>ḍu</td>
<td>that</td>
</tr>
<tr>
<td>05</td>
<td>ḍo.ḥi</td>
<td>ḍo.ḥi</td>
<td>ḍo.ḥi</td>
<td>first</td>
</tr>
<tr>
<td>70</td>
<td>ḍo.ḥa</td>
<td>ḍo.ḥa</td>
<td>ḍo.ḥa</td>
<td>unemployed</td>
</tr>
<tr>
<td>67</td>
<td>ḍo.ḥa</td>
<td>ḍo.ḥa</td>
<td>ḍo.ḥa</td>
<td>deafness</td>
</tr>
<tr>
<td>57</td>
<td>ḍa</td>
<td>ḍa</td>
<td>ḍa</td>
<td>guest</td>
</tr>
<tr>
<td>51</td>
<td>ḍa</td>
<td>ḍa</td>
<td>ḍa</td>
<td>guest</td>
</tr>
<tr>
<td>25</td>
<td>ṽai</td>
<td>ṽai</td>
<td>ṽai</td>
<td>father-in-law of one’s child</td>
</tr>
<tr>
<td>13</td>
<td>ṽa</td>
<td>ṽa</td>
<td>ṽa</td>
<td>daily interaction</td>
</tr>
<tr>
<td>61</td>
<td>ṽa</td>
<td>ṽa</td>
<td>ṽa</td>
<td>sugarcane</td>
</tr>
<tr>
<td>33</td>
<td>ṽa</td>
<td>ṽa</td>
<td>ṽa</td>
<td>city</td>
</tr>
</tbody>
</table>
Appendix D. Sound files for figures

<Fig1.wav>: Speaker 9, female, 30, from Mumbai
Target word ɰɛɪt̠ [ɻɪt̠] ‘polluted’

<Fig2.wav>: Speaker 6, female, 29, from the river
Target word ɭɭɭ [ɭɭɭ] ‘guest’

<Fig3a.wav>: Speaker 9, female, 30, from Mumbai
Target word ɭɭɭɭ [ɭɭɭɭ] ‘sugarcane’

<Fig3b.wav>: Speaker 9, female, 30, from Mumbai
Target word ɭɭɭɭ [ɭɭɭɭ] ‘city’

<Fig4.wav>: Speaker 5, female, 50, from Mumbai

Appendix E. Sound files illustrating a three-way breathiness contrast ([CV],[CV],[CV])

<Triplet5-modal.wav>: Speaker 5, female, 50, from Mumbai
Target word ɰɪə [bəɭ] ‘twelve’ cut from larger sentence

<Triplet5-breathy.wav>: Speaker 5, female, 50, from Mumbai
Target word ɰɪə [bəɭ] ‘outside’ cut from larger sentence

<Triplet5-aspirated.wav>: Speaker 5, female, 50, from Mumbai
Target word ɰɪə [bəɭ] ‘burden’, ‘weight’ cut from larger sentence

Appendix F. Sound files illustrating a two-way breathiness contrast ([CV],[CV])

<Pair-modal.wav>: Speaker 10, male, 25, lived in various parts of India
Target word ɰɛɪt̠ [ɻɪt̠] ‘of what kind’ cut from larger sentence

<Pair-breathy.wav>: Speaker 10, male, 25, lived in various parts of India
Target word ɰɛɪt̠ [ɻɪt̠] ‘to say’ cut from larger sentence

References

Please cite this article as: Khan, S.D., The phonetics of contrastive phonation in Gujarati. Journal of Phonetics (2012). http://dx.doi.org/10.1016/j.wocn.2012.07.001