Phonation Contrasts Across Languages P. Keating¹, C. Esposito², M. Garellek¹, S. Khan^{1,3}, J. Kuang¹ ¹UCLA; ²Macalester College; ³Brown University

Introduction

Across languages with phonation contrasts, the phonation categories are distinguished by a variety of measures (e.g. Gordon & Ladefoged 2001, Esposito 2010), but not by every measure in each language. **Our questions**:

•What **measures** distinguish phonation categories within and across languages?

•What are the **dimensions** of the acoustic voice quality **space**?

•How are the phonation categories of different languages located in this space?

Methods

We compare the contrastive phonations of four unrelated languages on several acoustic measures, and for three languages on measures from electroglottographic (EGG) recordings:

Acoustic Measures

Acoustic measures over time were made semi-automatically from the audio by VoiceSauce (Shue et al. 2009), a free UCLA program:

•F0 by the STRAIGHT algorithm (Kawahara et al. 1998) for finding harmonics

•Corrected (*) harmonic amplitude differences (Hanson 1995, Iseli et al. 2007): •H1*-H2*, H2*-H4* •H1*-A1*, H1*-A2*, H1*-A3*

•Cepstral Peak Prominence (CPP) •Energy

EGG Measures

EGG signals were recorded with the audio via a Glottal Enterprises EG2. Automated EGG measures were made by **EggWorks**, a free UCLA program:

•CQ_H: Contact Quotient, here using the "hybrid" method with 25% threshold

•PIC: Peak Increase in Contact (the peak positive value in the EGG derivative, like DECPA (Michaud 2004))

Language (variety) (family)	Phonations	Tones	Source of recordings	# of speakers	EGG # of speakers
Gujarati (Indo-European)	Modal, breathy	No	Fieldwork in Los Angeles	10 (7F, 3M)	Yes (7F, 3M)
Hmong (White) (Hmong-Mien)	Modal, breathy, creaky	Yes	Fieldwork in St. Paul	32 (9F, 23M)	Yes (5F, 6M)
Mazatec (Jalapa) (Otomanguean)	Modal, breathy, creaky	Yes	UCLA online phonetic archive	16 (6F, 10M)	-None-
Yi (Southern) (Tibeto-Burman)	Lax, tense	Yes	Fieldwork in SW China	12 (6F, 6M)	Yes (6F, 6M)

Individual-language Results

Success of various acoustic and EGG measures. A check mark indicates that the measure significantly distinguished some/all phonations in a given language:

Measure	Gujarati	Hmong	Mazatec	Yi
H1*-H2*	\checkmark	\checkmark	\checkmark	\checkmark
H2*-H4*				
H1*-A1*	\checkmark		\checkmark	\checkmark
H1*-A2*	\checkmark		\checkmark	\checkmark
H1*-A3*	\checkmark		\checkmark	\checkmark
CPP		\checkmark	\checkmark	\checkmark
Energy			\checkmark	
CQ_H	\checkmark	\checkmark	N/A	\checkmark
PIC		\checkmark	N/A	\checkmark

H1*-H2* is higher for breathier phonations, and can also vary with tone (here, tones grouped into High-Mid-Low):

CQ_H. Breathy phonations are made with longer glottal openings (lower CQ_H). All 3 languages use CQ_H and, acoustically, H1*-H2*:

• **Timecourse** effects: Where in the vowel are the phonation contrasts strongest? • Gender effects: No significant interactions.

•Multi-Dimensional Scaling of the acoustic measures in all 10 (2+3+3+2) language-specific phonation categories in all languages (using Manhattan distances), for midtone non-high vowels, is plotted for the **3-D** solution.

•The cross-language differences are much greater than the withinlanguage contrasts. Contrasts differ on Dimension 3, which most reflects H2*-H4* and H1*-H2:

PIC. Contrary to expectation, breathy phonations show *faster contact* (higher PIC). PIC is used in the 2 languages with creak; acoustically, these languages also use CPP:

Hmong: beginning (for breathy), end (for creaky) Mazatec: beginning Yi: throughout

LabPhon 12

July 10, 2010

Cross-language Results

•Linear Mixed Effects models were run for each acoustic measure on all 10 language-specific phonation categories to determine how many are distinct, and on which measures:

•Modals and breathy/lax differ across all languages on a variety of measures

•Creaky/tense differ across all languages only in H1*-A1*, CPP, and Energy

References & Acknowledgments

• Esposito, C.M. (2010) The effects of linguistic experience on the perception of phonation, Journal of Phonetics 38, 306-308. • Gordon, M. & P. Ladefoged (2001) Phonation types: a cross-linguistic overview, Journal of Phonetics 29, 383-406. • Hanson, H. M. (1995) Glottal characteristics of female speakers, Ph.D. Dissertation, Harvard • Iseli, M., Y.-L. Shue & A. Alwan (2007) Age, sex, and vowel dependencies of acoustic measures related to the voice source, J. Acoustical Society of America 121, 2283–2295. •Kawahara, H., A. de Cheveign, & R. D. Patterson (1998) An instantaneous-frequency-based pitch extraction method for high quality speech transformation: revised TEMPO in the STRAIGHT-suite, Proc. ICSLP'98, Sydney, Australia, December 1998 • Michaud, A. (2004) A Measurement from Electroglottography: DECPA, and its Application in Prosody, Speech Prosody 2004, Nara, 633–636. • Shue, Y.-L., P. Keating & C. Vicenik (2009) VoiceSauce: A program for voice analysis, J.Acoustical Society of America 126, 2221 (abstract). Thanks to NSF grant BCS-0720304; to Yen Shue for VoiceSauce and Henry Tehrani for EggWorks; and to Sherrie Yang, Joe Ptacek, Victoria Thatte, and the Hmong American Partnership for assistance.